7.2 APPLY EXPONENT PROPERTIES INVOLVING QUOTIENTS

1) Quotient of Powers Property

EX:

- □ Simplify the expression. Write your answer using $\frac{\text{exponents.}}{(-4)^9}$ $\frac{(-4)^9}{(-4)^2}$
- $(-4)^{2}$ $(-4)^{9-3}$ $\boxed{(-4)^{7}}$ $\boxed{\frac{9^{4} \cdot 9^{3}}{9^{2}}}$ q^{7}

97

97-2

95

2) Power of a Quotient Property

□ When a <u>quoti</u>	ent is raised	
to a power	, raise <u>both</u> the	
Numerator	and the denominator	to
the power and _	Cancel if possible.	
$\Box EX: \qquad \left(\frac{3}{a}\right)^{7} = \frac{3^{7}}{a^{7}}$	 ★ 3/2 is the guotient ★ 3 is the Numerator 2 is the denominator ★ Raise both to the 7th power 	
$\left(\frac{x}{y}\right)^{2} = \frac{x^{2}}{y^{2}}$	* × is the guotient * × is the numerator y is the denominator * Raise both to the 2nd power	

EX: Simplify the Expression. -> As much as possible. Multiply out all Numbers.

$$\Box (2s/3t)^{3} \cdot (t^{5}/16)$$

$$\frac{(2s/3t)^{3}}{(3t)^{3}} \cdot \frac{t^{5}}{16}$$

$$\Box (3x^{2}/3y^{3})^{2}$$

$$\frac{(3x^{3})^{3}}{(3y^{3})^{3}}$$

$$\frac{(3x^{3})^{3}}{(3y^{3})^{3}}$$

$$\frac{(3x^{3})^{3}}{(3y^{3})^{3}}$$

$$\frac{(3x^{3})^{3}}{(3y^{3})^{3}}$$

$$\frac{(3x^{3})^{3}}{(3y^{3})^{3}}$$

$$\frac{(3x^{3})^{3}}{(3y^{3})^{3}}$$

$$\frac{(3x^{3})^{3}}{(3y^{3})^{3}}$$

$$\frac{(3x^{3})^{3}}{(3y^{3})^{3}}$$

$$\frac{(3x^{3})^{3}}{(3y^{3})^{3}}$$

- The order of magnitude of the brightness of the Milky Way is 10³⁶ watts. The order of magnitude of the brightness of a gamma ray burster is 10⁴⁵ watts. How many times brighter is the gamma ray burster than the Milky Way?
- http://www.youtube.com/watch?v=P2ESs1rPO_A

