7.2

APPLY EXPONENT PROPERTIES INVOLVING QUOTIENTS

1) Quotient of Powers Property

When \qquad dividing powers with
\qquad , subtract the exp ens exponents

EX:

$$
\begin{aligned}
& \frac{4^{7}}{4^{2}}=4^{7-2}=4^{5} \quad * \text { Like base is } 4 . \\
& \frac{x^{10}}{x^{7}}=x^{10-7}=x^{3} \quad * \text { Like base is } x .
\end{aligned}
$$

\square Simplify the expression. Write your answer using exponents. \rightarrow Don't multiply out numbers.
$\frac{(-4)^{9}}{(-4)^{2}}$
$(-4)^{9-2}$
$(-4)^{2}$
$\square \frac{\underline{9}^{4} \cdot \underline{9}^{3}}{9^{2}}$
$\frac{9^{7}}{9^{7}}$
99^{1-3}
9

2) Power of a Quotient Property

\square When a quotient is raised
to a power, raise \qquad the
numerator and the denominator
the power and \qquad if possible.

EX:

$$
\begin{aligned}
\left(\frac{3}{2}\right)^{7}=\frac{3^{7}}{2^{7}} & * \frac{3}{2} \text { is the quotient } \\
& * 3 \text { is the numerator } \\
& \begin{array}{l}
2 \text { is the denominator } \\
\text { Roise both to the } 7^{\text {th }}
\end{array} \\
\left(\frac{x}{y}\right)^{2}=\frac{x^{2}}{y^{2}} & * \frac{x}{y} \text { is the guotient } \\
& * \begin{array}{l}
x \text { is the numerator } \\
y \text { is the denominator } \\
\end{array}
\end{aligned}
$$

EX: Simplify the Expression. \rightarrow nim mimbay as asibh

$\square(-7 / x)^{2}$

$$
\frac{(-7)^{2}}{x^{2}} \frac{49}{x^{2}}
$$

$\square\left(x^{2} / 4 y\right)^{2}$
$\frac{\left(x^{2}\right)^{2}}{(4 y)^{2}} x^{\frac{x^{4}}{16 y^{2}}}$
$\square(-5 / y)^{3}$

$$
\begin{aligned}
& \frac{(-5)^{3}}{y^{3}} \\
& \frac{-125}{y^{3}}
\end{aligned}
$$

$(2 \mathrm{~s} / 3 \mathrm{t})^{3} \cdot(\mathrm{t} 5 / 16)$
$\frac{(23)^{3}}{(3)^{3}} \cdot \frac{t^{5}}{16}$

$$
\frac{18 s^{3}}{27^{2}} \cdot \frac{t^{5}}{162}
$$

$$
\frac{s^{3}}{27} \cdot \frac{t^{2}}{2}
$$

$\square\left(3 x^{2} / 3 y^{3}\right)^{2}$
$\frac{\left(3 x^{4}\right)^{2}}{\left(3 x^{2}\right)^{2}}$
造
$\frac{x^{4}}{y^{6}}$

$$
\frac{s^{3} t^{2}}{54}
$$

EX:

\square The order of magnitude of the brightness of the Milky Way is 10^{36} watts. The order of magnitude of the brightness of a gamma ray burster is 10^{45} watts. How many times brighter is the gamma ray burster than the Milky Way?
\square http://www.youtube.com/watch?v=P2ESs1rPO A

