7.3

DEFINE AND USE ZERO AND NEGATIVE EXPONENTS

Zero Power

Anything raised to the \qquad Zero power is
\qquad ONE

EX:

$$
\begin{aligned}
& 3^{0}=1 \\
& x^{0}=1
\end{aligned}
$$

WHY:

$$
\begin{aligned}
& \frac{4^{3}}{4^{3}}=14 \quad \text { * Any divided by itself is one. } \\
& \left.\frac{4^{3}}{4^{3}}=4^{0}\right\} \quad \text { * When dividing like bases } \\
& \text { subtract exponents. }
\end{aligned}
$$

* Therefore: $4^{\circ}=1$

Negative Exponents

\square When you have a negative exponent in the
\qquad
\square Put it in the denominator and make it _positive.
$\square E X: \varsigma^{5^{-3}}=\frac{1}{5^{3}}$
\square When you have a negative exponent in the
\qquad

- Put it in the numerator and make it _positive
- EX: $\left(\frac{1}{3^{-2}}=3^{2}\right.$
\square NOTE: Negative exponents represent
small numbers.

EX:

Evaluate the expression. ${ }^{\circ}$

\square Write your answer using only positive exponents.
*($\left.\frac{2}{3}\right)^{0}$
$*\left(\frac{1}{5}\right)^{-2}$
$\frac{1^{-2}}{5^{-2}} 2$
$\frac{5^{2}}{1^{2}}$
25

* $\left(4^{-7} \cdot 4^{3}\right)$
* 0^{-3}
$\frac{1}{0^{3}}$
$\frac{1}{0}$
$\frac{1}{0^{3}}$
$\frac{1}{0}$
$\frac{1}{64}$
* $(-8)^{-2}$
$\frac{1}{(-8)^{2}}$
$\frac{1}{64}$
*

$$
\begin{aligned}
& \left.16\left(\frac{2^{-3}}{2^{2}}\right)\right) \\
& 16\left(\frac{1}{2^{2} \cdot 2^{3}}\right) \\
& 16\left(\frac{1}{2^{5}}\right)
\end{aligned}
$$

$116\left(\frac{1}{3 \sqrt{2}}\right)$
\square

EX:
Simplify the expression.
Write your answer using only positive exponents.

$$
\begin{array}{ll}
\text { * }\left(2 x y^{-5}\right)^{3} \\
(2)^{3} x^{3}\left(y^{-5}\right)^{3} \\
\left.8 x^{3} y^{-15}\right) \\
\frac{8 x^{3}}{y^{15}}
\end{array} \quad \frac{*(2 x)^{-2} y^{5}}{-4 x^{2} y^{2}} \quad \begin{aligned}
& \frac{2^{-2} x^{-2} y^{5}}{-4 x^{2} y^{2}} \\
& \frac{4 x^{2}\left(-4 x^{2} y^{2}\right)}{22^{2} x^{2}\left(-4 x^{2} y^{2}\right)}
\end{aligned} \quad \begin{aligned}
& \frac{y^{83}}{-16 x^{4} y^{x}} \\
& \frac{y^{3}}{-16 x^{4}}
\end{aligned}
$$

\square The mass of one peppercorn is about 10^{-2} gram. About how many peppercorns are in a box containing 1 kilogram of peppercorns?

$$
\begin{gathered}
* 1 \mathrm{~kg}=1000 \mathrm{~g}=10^{3} \mathrm{~g} \\
\frac{\text { Total mass }}{\text { Individual Mass }}=\# \\
\left.\frac{10^{3}}{10^{-2}}\right) \\
10^{3} \cdot 10^{7} \\
10^{5} \text { peppercorns }
\end{gathered}
$$

