Chapter 5

Solving and Graphing Linear Inequalities

5.1
 Solve Inequalities Using
 Addition and Subtraction

Inequalities

- The using:

Graph of an Inequality in One Variable **

- The \qquad that represents \qquad
- Use an \qquad for < and >
- Use a \qquad for \leq and \geq

of the inequality.
The
ror

To Solve Inequalities:

each side to get the \qquad .

- Do \qquad change the sign.

EX:

Solve the inequality. Graph your solution.

- $x-9<3$
$-1 \geq m+\frac{1}{2}$

- $Y+14.9>-2.7$
$-1 \frac{1}{3} \leq x-8 \frac{1}{3}$

EX:

- Write and graph an inequality that describes the situation.
- The lowest temperature recorded in Antarctica was -129。F at the Russian Vostok station in 1983.
- You must 12 or under to order off of the kids menu.

EX:

- You are checking a bag at the airport. Bags can weigh no more than 50 pounds. Your bag weighs 16.8 pounds. Find the possible weights that you can add to the bag by writing and solving an
 inequality.

5.2
 Solve Inequalities Using Multiplication and Division

*

To Solve Inequalities:

- Multiply or divide each side of the inequality by the
\qquad to get the \qquad .
- If you multiply or divide by a \qquad * you must \qquad the \qquad \rightarrow

EX:

Solve the inequality. Graph your solution.

- $\frac{x}{8} \leq-2$
$5 x<45$
*
- $\frac{x}{-7} \leq 1.6$
$-6 x>24$

EX:

- A restaurant owner wants to place identical flower bouquets on 35 tables for opening night. The owner wants to spend no more than $\$ 400$ on the flowers. Write
 and solve an inequality that shows the possible amounts of money the owner should budget for each bouquet.

5.3
 Solve Multi－Step Inequalities

To Solve Inequalities:

\bigcirc each side.

- Get all of your \qquad on the
\bigcirc if necessary.
\qquad
\qquad

\odot \qquad each side by the same thing.
- REMEMBER TO \qquad IF YOU BY A

EX:Solve the inequality. Graph your solution.

$$
\text { - }-6 y+5<-16
$$

$$
\frac{-1}{4}(p-12)>-2
$$

*

$$
4-2 m>7-3 m
$$

$$
\frac{-2}{3} d-2<\frac{1}{3} d+8
$$

*

If you loose your variable when solving an inequality:

- 1) And the resulting inequality is \qquad , then the solution is \qquad .

- 2) And the resulting inequality is \qquad , then the inequality has \qquad .

EX: Solve the inequality, if possible.

$$
\text { - } 1-8 s \leq-4(2 s-1)
$$

$$
\frac{1}{5}(4 m+10)<\frac{4}{5} m+2 \pi
$$

$$
3 p-5>2 p+p-7
$$

$$
5 x-12 \leq 3 x-4
$$

EX:

- You are saving money for a summer basketball camp that costs $\$ 1800$. You have saved $\$ 500$ so far, and you have 14 more weeks to save. What are the possible
 average amounts of money that you can save per week in order to have at least $\$ 1800$ saved?

5.4
 Solve Compound Inequalities

Compound Inequality

- A compound inequality consists of inequalities joined by \qquad .
- EX: "And" Inequality

- EX: "Or" Inequality

To solve compound inequalities:

- With AND:
- Whatever you do to the \qquad of the inequality, do to \qquad of the inequality.
- With OR:
- Solve \qquad inequality \qquad .

EX:

Solve the inequality. Graph your solution.

- $10<2(y+2)<24$
$-7 \leq-x-1 \leq 3$

步

$$
4 x+1<-3 \text { or } 5 x-3>17
$$

$$
9 x-6>12 x+1 \text { or } 4>\frac{-2}{5} x+8
$$

EX: Translate the verbal phrase into an inequality. Then graph the inequality.

- All real numbers that are less than -1 or greater than or
 equal to 4 .

- All real numbers that are greater than or equal to -3 and less than 5.

- At an auction, the lowest bid for an autographed trading card is * $\$ 20$. The highest bid is $\$ 54$.

EX:

- Mars has a maximum temperature of $25^{\circ} \mathrm{C}$ at the equator and a minimum temperature of $-130^{\circ} \mathrm{C}$ at the winter pole.

- Write and solve a compound inequality that describes the possible temperatures (in degrees Fahrenheit) on Mars.
- Graph your solution.

*

$$
y^{*}
$$

5.5
 Solve Absolute Value Equations

Absolute Value

- The absolute value of a number is the between \qquad on the number line.
- Symbol:
- The absolute value of a number is \qquad because \qquad .
- EX: | 5 |

- EX:|-5|

Solving Absolute Value Equations:

- 1) \qquad the \qquad .
- 2) Take what is \qquad of the absolute value
 symbol and \qquad to both the of what is on
the other side of the equation.
- 3) \qquad the resulting equations.

EX: Solve the equation.

- $|x|=8$
$|2 x-7|=9$

- $4|t+9|-5=19$
$\frac{1}{3}|2 x-5|+3=7$

*

$$
y^{*}
$$

No Solution

- Anytime the absolute value expression equals a
\qquad the equation has
- EX: $|2 x+6|=-9$

EX:

Solve the equation, if possible.

- $2|x-5|+4=2$
$-3|x+2|-7=-10$

