CHAPTER 2 SOLVING LINEAR EQUATIONS

2.1 FIND SQUARE ROOTS AND COMPARE REAL NUMBERS

Square Root of a Number:

- EX:
- All positive real numbers have

numbers
 have a square

 root:- Zero only has \qquad square root:
- Radical - the \qquad
- Radicand - the
of the radical symbol

EX: Evaluate the expression

- Note the sign!!!

Perfect Square -
 - A number whose square root is an

-EX:

- If a number is \qquad , you will have to
its square root using a \qquad .
- EX: Approximate the square root to the nearest integer.

EX:

- The top of a square desk has an area of 560 square inches. Approximate the side length of the desk to the nearest inch.

Sets of Numbers

- a number that can be written as
the
- All
- Decimals that or
- EX:
-
- a number that \qquad
be written as the
- Decimals that repeat or terminate
- EX:
- Real numbers - the set of

Set of Numbers-

Real Number System (R)

EX:

- Tell whether each of the following numbers is a real number, a rational number, and irrational number, an integer, or a whole number: $-9 / 5,5.2,0, \sqrt{ } 7,-\sqrt{ } 20, V_{4}$
-Then order the numbers from least to greatest.

EX: Evaluate the Expression

- NOTE: The square root symbol should be taken care of in the first step of the order of operations.
- $11-V x$ when $x=81$
$\cdot-7 \cdot V x$ when $x=36$
- $6 \cdot v x+3$ when $x=100$
2.2

SOLVE ONE-STEP EQUATIONS

Goal when Solving Equations -

- To get the variable \qquad
- We will do this using \qquad -
- Operations that "undo" each other.
- EX:

When solving an equation, what ever you do to of the equation you must

-
Property of Equality - adding the same number to both sides of an equation produces an equivalent equation

- EX: $x-5=9$ same number from both sides of an equation produces an equivalent equation
- EX: $x+9=17$

Property of Equality - multiplying

 each side of an equation by the same number produces an equivalent equation- $\mathrm{EX}: \frac{x}{6}=8$ side of the an equation by the same number produces an equivalent equation
- EX: $4 x=48$

EX: Solve each equation. Show all work.

- $x+\frac{2}{7}=\frac{2}{3}$
- $q-11=-5$
$--65=-5 y$
$\frac{t}{-3}=15$

Reciprocal of a number:

- The number
- The of a number
- Examples of reciprocals:
- NOTE: The reciprocal of a \qquad must be
\qquad
- To solve an equation that has a variable being multiplied by a fraction, multiply each side by the
- EX:

EX: Solve the equation.

$\frac{-5}{4} x=10$

- $\frac{1}{3} y=\frac{1}{5}$
$3 x=\frac{9}{10}$

EX: Write an solve an equation to solve the problem.

- In a school, 540 students play a sport. This accounts for $\frac{4}{5}$ of the entire school enrollment. How many students are enrolled at the school?

- Mallory scored a total of 473 points this basketball season. This was 19 point more than her total points scored last year. How many points did she score last year?

2.3

SOLVE TWO-STEP EQUATIONS

When Solving 2-Step Equations:

-1) Look to
-2) both sides.
-3) thing.

- NOTE on Step 1:
- Like Terms - things that can be *Must have same exact
\qquad each side by the same the same thing from each side if necessary.

EX: Solve. Show all work.

- $5 x+9=24$
$-16=5 d-9 d$

$$
\cdot \frac{4}{5} y-4=16
$$

$$
-1=\frac{z}{3}-7
$$

EX:

-The output of a function is 4 less than 4 times the input. Find the input when the output is 3 .

EX: Write an equation and solve.

- Kim has a job where she makes $\$ 8$ per hour plus tips. Yesterday, Kim made \$53 dollars, \$13 of which was from tips. How many hours did she work?
- You have $\$ 320$ to spend on a dining table and chairs. A table costs $\$ 180$, and each chair costs $\$ 30$. How many chairs can you buy in addition to the table?
2.4

SOLVE MULTI-STEP EQUATIONS

To Solve Multi-Step Equations:

- Before solving look to \qquad each side of the equation using the \qquad .
- NOTE:
- If you cannot do what is inside of the parentheses you must use the to get rid of them.
-EX: $2(x+7)=3$

EX: Solve.

- $9 x-2 x+4=32$

$$
6 x-2(x-5)=46
$$

- $2 w+3(w+4)=27$
$11 x-9-7 x=15$

EX: Special Case

- Sometimes you can multiply by the , instead of having to distribute a
-EX: Solve
- $\frac{3}{2}(3 x+5)=-24$

$$
\frac{-4}{5}(4 a-1)=28
$$

EX: Write and solve an equation.

- A family went to the movie theater and spent $\$ 8.50$ per ticket. Each member of the family got a small pop for $\$ 2.25$ and they bought one large popcorn to share for $\$ 5.50$. If the family spent a total of $\$ 59.25$ at the movie theater, how many members does the family have?

EX:

- Find the value of x for the rectangle. Be sure to use the same units for the side lengths and the perimeter.
- Perimeter $=2800$ centimeters
- The side lengths are measured in meters.

2.5 SOLVE EQUATIONS WITH VARIABLES ON BOTH SIDES

To Solve Equations with Variables in Both Sides:

- 1) Look to
- 2) Get all of your variables \qquad
-3) \qquad
- EX: Solve
- $20+c=4 c-7$

$$
9-3 k=17-2 k
$$

- $5 z-2=2(3 z-4)$

$$
8 y-6=\frac{2}{3}(6 y+15)
$$

Equations do not always have one solution.

-__ an equation that true for of the variable.

- Solution is
- You know you have an identity if while solving the equation you your variable and the resulting equation is
- EX:
- $2 x+10=2(x+5)$
- Some equations have \qquad
- You know an equation has no solution if, while solving, you your variable and the resulting equation is
- EX:
- $3 x=3(x+4)$

EX: Solve the equation, if possible.

- $9 z+12=9(z+3)$

$$
n-10=\frac{5}{6} n-7-\frac{1}{3} n
$$

- $3(2 a+2)=2(3 a+3)$

EX: Write an equation and solve.

- A car dealership sold 50 new cars and 67 used cars this year. The number of new cars sold has been increasing by 6 cars each year. The number of used cars sold has been decreasing by 4 cars each year. If these trends continue, in how many years will the number of new cars sold be twice the number of used cars sold?
- To become a member at a gym, you have to pay a $\$ 30$ membership fee. The cost of admission is $\$ 5$ for members and $\$ 7$ for nonmembers. After how many visits to the rink is the total cost for members, including the membership fee, the same as the total cost for nonmembers.

EX: Find the perimeter of the square.

$3 x+6$

2.6
 WRITE RATIOS AND PROPORTIONS

Ratio -

- The of two quantities using
- Can be written in 3 ways:
- EX: When making salsa, the ratio of tomatoes to onions is 4 to 1.
- Meaning:
- if you use 4 tomatoes you need 1 onion.
- If you use 8 tomatoes, you need 2 onions.

EX:

- Derek has 44 CDs and his brother has 52 CDs. Find the specified ratio.
- NOTE: Always reduce all ratios!!!
- 1) The number of Derek's CDs to the number of his brother's CDs.
- 2) The number of Derek's CDs to the total number of CDs the brothers have.

Proportion -

- An equation that states that are
- In general: $\frac{a}{b}=\frac{c}{d}$
- To solve a proportion with a missing number, use
- EX: $\frac{11}{6}=\frac{x}{12}$

EX: Solve the proportion.

$\frac{w}{35}=\frac{4}{7}$

$$
\frac{x}{9}=\frac{5}{15}
$$

EX: Write the sentence as a proportion. Then solve the proportion.

- 12 is to 18 as d is to 27 .

EX:

- When two full moons appear in the same month, the second full moon is called a blue moon. On average, 2 blue moons occur every 5 years. Find the number of blue moons that are likely to occur in the next 25 years.
- An elevator is programmed so that the ratio of feet traveled to time in seconds is 30:1. How long will it take this particular elevator to go up 1029 feet?
2.7

SOLVE PROPORTIONS USING CROSS PRODUCTS

Remember -

- You can solve a proportion using \qquad -
- Other names:
- Cross Products Property
- Means-Extremes Property
- The "means" of a proportion - the \qquad numbers
- The "extremes" of a proportion - the \qquad numbers
- EX: $\frac{2}{3}=\frac{10}{15}$ or $2: 3=10: 15$

NOTE:

- Anytime a proportion has a sum or difference in it, the sum or difference must be put in before you cross multiply.

EX: Solve the proportion.

- $\frac{k-8}{7+k}=\frac{-1}{5}$

$$
\frac{3}{x}=\frac{2}{x-6}
$$

Scales

- Scale Drawing - a \qquad drawing of an object in which the dimensions of the drawing are \qquad to the dimensions of the object.
- Scale Model - a \qquad model of an object in which the dimensions of the model are \qquad to the dimensions of the object.

- Scale (of a scale drawing or model) - relates the dimensions to the actual dimensions of the object
- EX:

EX:

- The ship model kits at a hobby store have a scale of $1 \mathrm{ft}: 600 \mathrm{ft}$. A completed model of the Queen Elizabeth II is 1.6 ft long. Estimate the actual length of the ship.

2.8

REWRITE EQUATION AND FORMULAS

Equations in 2 variables -

- An equation/formula with 2 or more \qquad
- EX:
- EX:
- To rewrite an equation so that one variable \qquad of another variable means to get that variable \qquad and everything else on the other side of the equation.
- EX: Write $3 x+2 y=8$ so that y is a function of x.
- Meaning get y by itself and everything else on the other side of the equal sign.

EX:

-Write $5 x+4 y=20$ so that y is a function of x.

EX:

- The perimeter P of a rectangle is given by the formula $P=2 l+2 w$ where I is the length and w is the width. Solve for w.

EX:

- The area A of a triangle is given by the formula $A=\frac{1}{2}$ bh where b is the base and h is the height. Solve the formula for the height h.

EX:

- You are in Toronto, Canada. The high for the day is 22 degrees Celsius. Rewrite the formula $C=\frac{5}{9}(F-32)$ so that F is a function of C. Then find the temperature high in degrees Fahrenheit.

