Chapter 3
Graphing Linear Equations and Functions
3.1

Plot Points in a Coordinate Plane

Coordinate Plane-

- Two \qquad intersecting at a \qquad angle.
- x-axis - the \qquad axis
- \mathbf{y}-axis - the \qquad axis
- The coordinate plane is divided into

EX: Give the coordinates of the point.

Quachant II
O.

EX: Plot the point in a coordinate plane and describe the location of the point.

- $A(2,5)$
- $B(-1,0)$
- $C(-2,-1)$
- D(-5,3)
- $E(0,0)$
- $F(0,4)$

EX:

- Graph the function $y=\frac{-1}{3} x+2$ with domain $-6,-3$, and 0 . Then identify the range on the function.

EX:

- The table shows attendance at a school carnival before and after the school added game booths in 2002.
- A) Explain how you know that the table represents a function.
- B) Graph the function.
- C) Describe any trends.

Years, $\mathbf{x}_{\text {, }}$ before or since 2002	$\mathbf{- 2}$	$\mathbf{- 1}$	$\mathbf{0}$	$\mathbf{1}$
Attendance, \mathbf{y} (hundreds)	2.6	2.2	3.1	3.5

3.2 Graph Linear Equations

Linear Equations

- Linear equations - an equation whose \qquad
- Standard Form of a Linear Equation: \qquad
- A, B, and C are \qquad

Equations in 2 Variables

- Solution of an Equation in 2 Variables - the
\ldots, that produces a x and y are ___ into the equation.
- EX: Tell whether $\left(4, \frac{-1}{2}\right)$ is a solution of $x+2 y=5$
- EX: Tell whether $(1,-4)$ is a solution of $3 x-y=7$

Graphs

- The Graph of an Equation in 2 Variables - the
in a coordinate plane that represent
of the equation.

Method 1: Graphing By

- Make a \qquad -
- Choose \qquad convenient values for \qquad -
- Find \qquad .
- Plot the \qquad
- Connect the points with a

EX: Graph the equation by making a table.

- NOTE: It will be helpful to rewrite the equation so that y is a function of x.
- $-2 x+y=-3$

- $2 y-6 x=10$

Equations of Horizontal and Vertical Lines:

- The graph of \qquad is a \qquad line.
- The graph of \qquad is a line.

Graph.

- $y=2.5$

Graph.

- $x=-4$

Restricting the Domain

- Sometimes the domain of a linear function is restricted.
- Meaning:
- EX: $y=3 x+5$ with domain $x \geq 0$
- EX: $\mathrm{y}=\mathrm{x}-9$ with domain $-2 \leq x \leq 3$
- As a result, your range will also be restricted also.

EX: Graph the function with the given domain. Then identify the range of the function.

- $y=-3 x+1$ with domain $x \leq 0$

Ta

- $y=-x-1$ with domain $-1 \leq x \leq 3$

Ta

EX:

- The distance d (in miles)that a runner travels is given by the function $\mathbf{d}=\mathbf{6 t}$ where \mathbf{t} is the time (in hours) spent running. The runner plans to go for a 1.5 hour run. Graph the function and identify its domain and range.

3.3 Graph Using Intercepts

Intercepts on a Graph

- X-intercept: where the graph \qquad
- To find the x intercept of an equation, \qquad and solve for x.
- Y-intercept: where the graph \qquad
- To find the y intercept of an equation,

\qquad and solve for y.

EX: Find the x-intercept and the y-intercept of the graph of the equation.

- $-3 x+5 y=-15$
- $4 x-2 y=10$

Graphing Method 2: x and y Intercepts

- Find the \qquad .
- Find the \qquad .
- Plot and \qquad the two points and connect them with a \qquad .

EX: Graph each equation. Label the points where the line crosses the axes.

- $6 x+7 y=42$

Ta

- $y=-4 x+3$

EX: Identify the x-intercept and the y-intercept of the graph.

EX: Draw the graph that has the given intercepts.

- x-intercept: -5
- y-intercept: 6

EX:

- You make and sell hair bows. You sell small bows for $\$ 3$ and large bows for $\$ 5$. You want to earn $\$ 60$ per week. This situation can be modeled by $3 x+5 y=60$ where x is the number of small bows and y is the number of large bows.
- Find the intercepts of the graph.
- What do they represent in this situation?
- Graph the equation.
- Give three possibilities for the number of each type of bow you can sell to earn $\$ 60$.

3.4 Find Slope and Rate of Change

Slope (m)

- The slope m of a nonvertical line passing through two points is the \qquad .
- Slope Formula:
- EX:

Slope can be:

- Positive - if the line \qquad from left to right
- Negative - if the line \qquad from left to right
- Zero - if the line is \qquad
- Undefined - if the line is
- Division by 0 is undefined

Slope

EXAMPLE:

EX: Find the slope of the line that passes through the points.

- $(5,2)$ and $(4,-1)$
$(0,6)$ and $(5,-4)$
- $(-2,3)$ and $(4,6)$
(5, 2) and (5, -2)

EXAMPLE:

EX: Find the value or x or y so that the line passing through the given points has the given slope.

- $(x, 9),(-1,19) ; m=5$
$(5,4),(-5, y) ; m=3 / 5$

Rate of Change

- A rate of change compares a \qquad to a \qquad .
- EX: You make $\$ 100$ is 5 hours.
- Your hourly wage is a rate of change that describes how your \qquad changes
the \qquad working.

EX:

- The table shows the distance a person walks for exercise. Find the rate of change in distance with respect to time. And interpret its meaning.

Time (minutes)	Distance (miles)
30	1.5
60	3
90	4.5

- In a real-world problem, \qquad represents the
\qquad .
- You can compare rates of change by comparing
\qquad -
- EX: Rate of Change of Temperature
- When was the rate of change of the temperature the least?

EX: The graph shows the distance of a driving car. Give a verbal description of the drive.

3.5

Graph Using SlopeIntercept Form

Slope-Intercept Form:

- m is the \qquad of the line
- b is the of the line
- Ex:

EXAMPLE:

EX: Identify the slope and y intercept of the line with the given equation.

- $y=3 x+4$

$$
y=5 x-3
$$

- $3 x-3 y=12$

$$
x+4 y=6
$$

Graphing Method 3: SlopeIntercept Form:

- 1) Rewrite the equation in \qquad .
- 2) Identify the \qquad and \qquad .
- 3) Plot the \qquad .
- 4) Use the \qquad to find on the line.
- 5) Draw a \qquad through the points.

EX: Graph the equation using slope-intercept form
 - $y=2 x-5$

- $x+2 y=4$

- $y=\frac{-2}{3} x-1$

- $y=\frac{1}{3} x$

Slope-Intercept Form in Real Life

- In real-life problems:
- The \qquad is the
- The is the

EX:

- We have 5 inches of snow on the ground. It is snowing at a rate of 2.5 inches per hour. Write an equation in slope intercept form to model the situation.
- If it snows for 8 hours, how much snow will we have?
- If we end up with 12 inches, how long did it snow for?

Parallel Lines

- Parallel Lines - Lines that
\qquad .
- Parallel lines have slopes.
- EX:

EX: Determine if the lines are parallel.

EXAMPLE:
EX: Tell whether the graphs of the two equations are parallel. Explain your reasoning.

- $y=3 x+2$ and $-7+3 x=y$ $4 x+y=3$ and $x+4 y=3$
3.6

Model Direct Variation

Direct Variation

- Two variables \mathbf{x} and \mathbf{y} show direct variation provided that:
\qquad
- "a" is called the \qquad .
- y is said to \qquad with x .
- EX: $y=7 x$

EXAMPLE:
 EX: Tell whether the equation represents direct variation. If so, identify the constant of variation.

- Note: An equation represents direct variation if it can be rewritten in the form $y=a x$.
- $2 x+y=0$
$-x+y=1$
- $4 x-5 y=0$

EXAMPLE:

EX: Given that y varies directly as X , use the specified values to write a direct variation equation that relates x to y.

- $x=3, y=-9$

$$
x=14, y=7
$$

Graphs of Direct Variation Equations:

- The direct variation equation $\mathbf{y}=\mathbf{a x}$ is in slope-intercept form with:
- "a" being the of the graph
\bigcirc
being the of the
- The graph will always pass through the \qquad .

EX: Graph the direct variation equation.

- $y=-3 x$

- $12 y=-24 x$

- $y-1.25 x=0$

EX: Write the direct variation equation. Then find the value of y when $x=10$

The graph of $y=k x$ is a firne throsigh thee arigin. The slope of the graph of $\mathrm{y}=\mathrm{kx}$ is k .

- The direct variation equation $\mathrm{y}=\mathrm{ax}$ can be written as:
- Therefore the ratio of y to x is constant.
- EX:

EX:

- The table shows the cost of buying used DVDs at a music store.
- A) Explain why C varies directly with d.
- B) Write a direct variation equation that relates d and C.

Number of DVDs, d	Cost, C
3	$\$ 25.77$
6	$\$ 51.54$
9	$\$ 77.31$

EX:

- An object that weighs 100 pounds on Earth would weigh just 6 pounds on Pluto. Assume that weight P on Pluto varies directly with weight E on Earth.
- A) Write a direct variation equation that relates P to E.
- B) What would a boulder weighing 750 pounds on Earth weigh on Pluto?
3.7 Graph Linear Functions

Functions

- Function - A pairing of \qquad and
such that \qquad
- EX: $y=m x+b$
- Function notation : $f(x)=m x+b$
- Replaces the \qquad .
- $f(x)$ is read as \qquad .
- It does \qquad mean \qquad .
- You can also use other letters like \qquad .

EXAMPLE:

EX: Evaluate the function when $x=-2,0$, and 3 .

- $p(x)=-8 x-2$

$$
s(x)=\frac{2}{5} x+3
$$

EXAMPLE:

EX: Find the value of x so that the function has the given value.

- $g(x)=-x+5 ; 2$

$$
n(x)=-2 x-21 ;-6
$$

Graphing Functions

- To graph a function $f(x)=m x+b$
- Replace the \qquad .
- Then graph using \qquad : Plot the on the graph and use the \qquad to find other points
- EX: Graph the function $f(x)=x+5$

EX: Graph the function.

- $q(x)=x-1$

- $r(x)=4 x$

- $h(x)=-2 x$

