

Write Linear Equations in Slope-Intercept Form

Slope-Intercept Form

ନ୍ତ	W	vith	6	and	

- EX: Write an equation of the line with the given slope and yintercept.
- ∞ Slope: 8 y-intercept: -7

Slope:
$$\frac{3}{4}$$
 y-intercept: 3

EX: Write an equation of the line shown.

େ	not for the point where a line									
	and any		on the							
	line, you can write an		_ of the line by:							
େ	Finding the	using the _	·							
େ	Plugging in	and	into							

EX: Write an equation of the line that passes through the given points. (2, -7), (0, -5)

Functions

- Remember Function Notation: f(x) = mx + b
- EX: f(5) = 8 can be written as the ordered pair (5, 8)

\bowtie EX: f(0) = -2 can be written as the ordered pair (0, -2)

EX: Write an equation for the linear function f with the given values f(0) = -2, f(8) = 4 f(-3) = 6, f(0) = 5

Slope-Intercept Form

- ∞ Remember, in a real-world problem:
- ∞ Slope (m) = _____
- ∞ Y-intercept (b) = _____

- A dance academy charges \$20 to use the facility and \$25 per hour of instruction.
- A) Write an equation that gives the total cost to learn dance at the academy as a function of hours of instruction.
- ∞ B) Find the total cost for 2 hours of dance instruction.

Use Linear Equations in Slope-Intercept Form

Writing an Equation of a Line in Slope-Intercept Form:

- 1) Identify the _____. You can use the _____.
 to find slope if you know ______
 on the line.
- So 2) Find the ______. You can substitute the _______and the coordinates of a ______on the line into ______. Then _____.
- S) Write the equation by substituting _____

∞ EX: Write an equation of the line that passes through the given point and has the given slope m.

(8, -4), m = -3/4

EX: Write an equation of the line that passes through the given points. (1, -2), (-5, 4) (10, -5), (-5, 1)

EX: Write an equation for a linear function f that has the given values.
 f(-2) = 10, f(4) = -2
 f(2) = 7, f(4) = 6

A gym charges \$35 per month after an initial membership fee. A member has paid a total of \$250 after 6 months. Write an equation that gives the total cost of a gym membership as a function of the length of membership (in months). Find the total cost of membership after 10 months.

Write Linear Equations in Point-Slope Form

Point-Slope Form

The point-slope form of the equation of a nonvertical line through a given ______ with a ______ is:

- When asked to write an equation on point-slope form, plug in numbers for _____.
 - Leave ______as variables.

Write an equation in point-slope form of the line that passes through the given point and has the given slope.

∞ (-1, 4), m = -2 (-11, -3), m = -9

- To write an equation in point-slope form given 2 ordered pairs:
- ∞ 1) Find the _____using the _____.

_____).

So 2) Plug in the _____ and _____ and _____ into point-slope form (you will have ______

NOTE: The 2 equations will be the _____ if you rewrite them in _____.

Write an equation in point-slope form of the line that passes through the given points.

∞ (2, 3) and (4, 4)

(-4, -1) and (6, -7)

You can graph an equation in point-slope form by plotting the given ordered pair and using the slope to find another point on the line.

So EX: Graph
$$y - 1 = -(x - 2)$$

EX: Graph
$$y + 3 = -2(x - 2)$$

A radio station charges \$650 for the first minute of ad time and then \$340 for each additional minute. Write an equation that gives the total cost (in dollars) to run an ad as a function of the number of minutes the ad runs. Then find the cost of 7 minutes of ad time.

Write Linear Equations in Standard Form

Standard Form

<mark>۶</mark> ۶۶	where A, B, and C are real numbers.
n equation in _	or
	can be written in
	by rearranging it to match the
format of	
• Get	on the
n EX: Rewrite y – 1	x = -3(x - 1) in standard form.

Write an equation in standard form of the line that passes through the given point and has the given slope *m* or that passes trough the two given points.

$$(-1, 5), m = -2$$
 (3, -1), (2, -3)

Find the missing coefficient in the equation of the line that passes through the given point.

∞ -4x + By = 7, (-1, 1) Ax + y = -3, (2, 11)

- T-shirts at a flea market cost \$4.50 each and shorts cost
 \$6 each. You have \$108 to spend.
- A) Write an equation in standard form that models the possible combinations of t-shirts and shorts you can buy.
- ∞ B) Graph the equation (using x and y intercepts).
- So C) Tell what the intercepts of the graph mean in this situation.
- D) If you buy 12 pairs of shorts, how many shirts can you buy?

-				-	
				_	
_				_	-
_	 			_	-
		++	++		-
-		++	+ +	-	-
				-	-

Write Equations of Parallel and Perpendicular Lines

Parallel Lines

Parallel Lines – lines that _____

Parallel lines have the ______

- EX: Write an equation of the line that passes through the given point and is parallel to the given line.
- ∞ (5, -1), y = -3/5 x 3

Perpendicular Lines

∞ Perpendicular Lines – lines that intersect to form a

Write an equation of the line that passes through the given point and is perpendicular to the given line.

 $(-4, -1), y = \frac{4}{3}x + 6$

- Determine which lines, if any, are parallel or perpendicular.
- ∞ Line a: 2x + 6y = -3
- ∞ Line b: y = 3x 8
- ∞ Line c: -1.5y + 4.5x = 6

The path of a golf ball bouncing off a curved wall on a mini golf course is shown. Lines a and b of the path appear to be perpendicular. Are they?

Fit a Line to Data

Scatter Plot

Describe the correlation.

 Use the scatter plot to predict a reasonable exam score for 5 missed classes and 25 missed classes.

Line of Fit

To Draw and Write a Line of Fit:

∞ 1) Make a ______.

So 2) Decide if the data can be _____

So 3) Draw a ______ that appears to ______

_____ (about the same number of points

_____ and _____ the line).

So 4) Write an _____ using _____
on the ______.

Make a scatter plot of the data. Draw a line of best fit. Write an equation of the line.

X	1	1	3	4	5	6	9
Y	10	12	33	46	59	70	102

								_				_					
			_		-	_							_	_		1	
	\vdash	-	-	_	-	-	_				_	-	_		-	+	
		_	_												_	4	
						_				_							
					_	_											
			-		-								_			1	
	\vdash	-	-		_								_		-	+	
\vdash		-	-		_	_				_	_	-	_	_	-	-	
		_	_		_										_	4	
		_															
																Τ	

Make a scatter plot of the data in the table. Draw a line of fit. Write an equation of the line that models Grade Point Average as a function of hours studying.

Friend	Number of hours of studying per week	Grade Point Average (out of 5.0)			
Allie	14	3.91			
Samantha	42	4.98			
Hayley	10	3.22			
Jessica	32	4.81			
Megan	5	2.0			
Rachel	10	2.82			
Briley	25	3.79			
Lauren	18	3.48			

	_		