CHAPTER 7: EXPONENTS AND EXPONENTIAL FUNCTIONS

7.1

APPLY EXPONENT PROPERTIES INVOLVING PRODUCTS

Exponents

\square Exponent - the
the
is
$\square E X:$

1) Product of Powers Property

\square When you \qquad
the \qquad
\square EX:
\square Simplify the expression. Write your answer using exponents.
$\square(-7)^{2}(-7)^{8}$
$\square x^{2} \cdot x^{6} \cdot x$

2) Power of a Power Property

\square When you \qquad
the
\square EX:
\square Simplify the expression. Write your answer using exponents.
$\square\left(4^{2}\right)^{7}$
$\square\left[(-2)^{4}\right]^{5}$
$\square\left[(m+1)^{6}\right]^{3}$
3) Power of a Product Property
\square When a is
, raise to the
$\square E X:$
\square Simplify each expression. Write your answer using exponents.
$\square(20 \cdot 17)^{3}$

EX: Simplify each expression.

$\square(-4 x)^{2}$
$\left(2 x^{3}\right)^{2} \cdot x^{4}$
$\square-(4 x)^{2}$
$\square\left(-10 x^{6}\right)^{2} \cdot x^{2}$
$\square\left(3 x^{5}\right)^{3}\left(2 x^{7}\right)^{2}$

Order of Magnitude

\square The order of magnitude of a quantity is the
\qquad that is to the of the quantity.
\square An \qquad
$\square E X:$

A box of staples contains 10^{4} stables. How many stables do 10^{2} boxes contain?
\square There are about 1 billion grains of sand in 1 cubic foot of sand. Use order of magnitude to find about how many grains of sand are in 25 million cubic feet of sand.
7.2

APPLY EXPONENT PROPERTIES INVOLVING QUOTIENTS

1) Quotient of Powers Property

\square When
with
$\square E X:$
\square Simplify the expression. Write your answer using exponents.
$\square \frac{(-4)^{9}}{(-4)^{2}}$
$\square \frac{9^{4} \cdot 9^{3}}{9^{2}}$

2) Power of a Quotient Property

\square When a is
\longrightarrow, raise the and the___ if possible.
$\square E X:$

EX: Simplify the Expression.

$\square(-7 / x)^{2}$
$\square\left(x^{2} / 4 y\right)^{2}$
$\square(-5 / y)^{3}$
$\square(2 s / 3 t)^{3} \cdot\left(t^{5} / 16\right)$
$\square\left(3 x^{2} / 3 y^{3}\right)^{2}$

EX:

\square The order of magnitude of the brightness of the Milky Way is 10^{36} watts. The order of magnitude of the brightness of a gamma ray burster is 10^{45} watts. How many times brighter is the gamma ray burster than the Milky Way?

- http://www.youtube.com/watch?v=P2ESs1rPO A

7.3

DEFINE AND USE ZERO AND NEGATIVE EXPONENTS

Zero Power

\square Anything raised to the is
\qquad
EX:
\square WHY:

Negative Exponents

\square When you have a \qquad

- Put it in the \qquad and make it \qquad
$\square E X:$
\square When you have a \qquad in the
\qquad
- Put it in the \qquad and make it \qquad
\square EX:
\square NOTE: Negative exponents represent numbers.

EX:

Evaluate the expression.

\square Write your answer using only positive exponents.

Simplify the expression.

\square Write your answer using only positive exponents.
\square The mass of one peppercorn is about 10^{-2} gram. About how many peppercorns are in a box containing 1 kilogram of peppercorns?

7.4

WRITE AND GRAPH EXPONENTIAL GROWTH FUNCTIONS

Exponential Functions

\square An exponential function is a function in the form of:
$\square E X:$
\square They are
functions.
\square They have graphs that are \qquad .

Exponential Function Table

x	-2	-1	0	1	2
y	2	4	8	16	32

To write a rule for a function table:

\square 1) Decide what each \qquad is being \qquad
\qquad
$\square 2)$ Find the \qquad
$\square 3)$ Fill in into when \qquad .
\qquad
\qquad
\qquad

EX: Write a rule for the function.

x	-2	-1	0	1	2
y	3	9	27	81	243

EX: Write a rule for the function.

x	-2	-1	0	1	2
y	$2 / 9$	$2 / 3$	2	6	18

Exponential Growth

\square When a quantity by the over -
\square EX: Each year the value of an antique car increases by 50\%.
\square Exponential growth is different from linear growth because \qquad increases by the each time interval,

Exponential Growth Model

\square
$\square a$ is the
$\square(1+r)$ is the
$\square \mathrm{r}$ is the
$\square \dagger$ is the
\square The owner of an original copy of a 1938 comic book sold it at an auction in 2005. The owner bought the comic book for $\$ 55$ in 1980. The value of the comic book increased at a rate of 2.8% per year.
\square A) Write a function that models the value of the comic book over time.
\square B) What was the approximate value of the comic book at the time of the auction in 2005? Round your answer to the nearest dollar.

Compound Interest

\square Interest earned on both an \qquad and on \qquad .
\square EX: You put \$125 in a savings account that earns 2% interest compounded yearly. What will the balance in your account be after 5 years?
7.5

WRITE AND GRAPH EXPONENTIAL DECAY FUNCTIONS

EX: Write a rule for the function.

x	-1	0	1	2
y	5	1	$1 / 5$	$1 / 25$

Exponential Decay

\square When a quantity by the over -

EX: The number of acres of forests in the U.S. decreases by 0.5% each year.

Exponential Decay Model

$\square a$ is the
$\square(1-r)$ is the
$\square \mathbf{r}$ is the
$\square \dagger$ is the
\square A farmer bought a tractor in 1999 for $\$ 30,000$. The value of the tractor has been decreasing at a rate of 18% per year.
\square Write a function that models the value of the tractor over time.
\square What was the approximate value of the tractor in 2005?

Exponential Decay vs. Exponential Growth

Graph Examples:

