CHAPTER 7: EXPONENTS AND EXPONENTIAL FUNCTIONS 7.1 APPLY EXPONENT PROPERTIES INVOLVING PRODUCTS

1) Product of Powers Property

- Simplify the expression. Write your answer using exponents.
- \Box (-7)²(-7)⁸

2) Power of a Power Property

- Simplify the expression. Write your answer using exponents.
- □ (4²)⁷

□ [(-2)⁴]⁵

 \Box [(m + 1)⁶]³

3) Power of a Product Property

□ EX:

- Simplify each expression. Write your answer using exponents.
- □ (20·17)³

EX: Simplify each expression.

$$\Box (-4x)^2$$
 $(2x^3)^2 \cdot x^4$

 $\Box (-10 X^6)^2 \cdot X^2$

 \Box (3x⁵)³(2x⁷)²

Order of Magnitude

The order of magnitude of a quantity is the that is ______ that is ______ to the ______ of the quantity.

□ An _____

□ EX:

A box of staples contains 10⁴ stables. How many stables do 10² boxes contain?

There are about 1 billion grains of sand in 1 cubic foot of sand. Use order of magnitude to find about how many grains of sand are in 25 million cubic feet of sand.

7.2 APPLY EXPONENT PROPERTIES INVOLVING QUOTIENTS

1) Quotient of Powers Property

□ EX:

Simplify the expression. Write your answer using exponents.

$$\Box \ \frac{(-4)^9}{(-4)^2}$$

2) Power of a Quotient Property

□ EX:

EX: Simplify the Expression.

 \Box (-7/x)²

\Box (x²/4y)²

□ (- 5/y)³

$$\Box$$
 (2s/3t)³ · (t⁵/16)

$$\Box (3x^2/3y^3)^2$$

The order of magnitude of the brightness of the Milky Way is 10³⁶ watts. The order of magnitude of the brightness of a gamma ray burster is 10⁴⁵ watts. How many times brighter is the gamma ray burster than the Milky Way?

http://www.youtube.com/watch?v=P2ESs1rPO_A

7.3 DEFINE AND USE ZERO AND NEGATIVE EXPONENTS

Anything raised to the _____

•

is

□ EX:

Negative Exponents

Evaluate the expression.

□ Write your answer using only positive exponents.

Simplify the expression.

□ Write your answer using only positive exponents.

The mass of one peppercorn is about 10⁻² gram. About how many peppercorns are in a box containing 1kilogram of peppercorns?

7.4 WRITE AND GRAPH EXPONENTIAL GROWTH FUNCTIONS

Exponential Functions

□ An **exponential function** is a function in the form of:

□ They are _____ functions.

They have graphs that are

Exponential Function Table

x	-2	-1	0	1	2
У	2	4	8	16	32

To write a rule for a function table:

EX: Write a rule for the function.

x	-2	-1	0	1	2
У	3	9	27	81	243

EX: Write a rule for the function.

x	-2	-1	0	1	2
У	2/9	2/3	2	6	18

Exponential Growth

When a quantity _		by the
	over	•
EX: Each year the 50%.	value of an c	intique car increases by

Exponential growth is different from linear growth because ______ increases by the ______ each time interval,

Exponential Growth Model

🗆 a is the		
\square (1 + r) is the _		
\square r is the		
🗆 t is the		

- The owner of an original copy of a 1938 comic book sold it at an auction in 2005. The owner bought the comic book for \$55 in 1980. The value of the comic book increased at a rate of 2.8% per year.
 - A) Write a function that models the value of the comic book over time.
 - B) What was the approximate value of the comic book at the time of the auction in 2005?
 Round your answer to the nearest dollar.

Compound Interest

- Interest earned on both an ______ and on _____
- EX: You put \$125 in a savings account that earns 2% interest compounded yearly. What will the balance in your account be after 5 years?

7.5 WRITE AND GRAPH EXPONENTIAL DECAY FUNCTIONS

EX: Write a rule for the function.

x	-1	0	1	2
у	5	1	1/5	1/25

Exponential Decay

When a quantity	by the
	over
EX: The number o	f acres of forests in the U.S. decreases

by 0.5% each year.

Exponential Decay Model

□ a is the	
\Box (1-r) is the _	
□ r is the	
□ t is the	

- A farmer bought a tractor in 1999 for \$30,000.
 The value of the tractor has been decreasing at a rate of 18% per year.
 - Write a function that models the value of the tractor over time.
 - What was the approximate value of the tractor in 2005?

Exponential Decay vs. Exponential Growth

Graph Examples:

