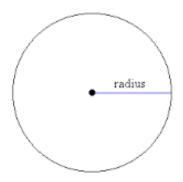
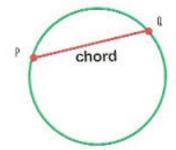

CHAPTER 10 PROPERTIES OF CIRCLES

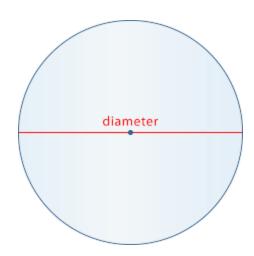
10.1 USE PROPERTIES OF TANGENTS

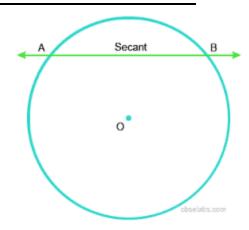

CIRCLE

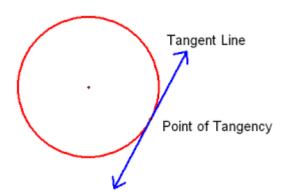
o The _____ that are ____ from a ____ point.



SEGMENTS WITHIN CIRCLES


- Radius the segment from the _____ of the circle to the ____
 - All radii in a circle are _____


• Chord – a segment whose _____ are on the

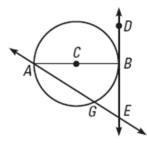

- o Diameter a ______ that goes through the _____
 - All the _____ a circle
 - Radius is always _____ of the diameter

Secant – a ______ that intersects a circle in _____

o Tangent − a ______ that intersects a circle in _____

EX: Tell whether the line, ray, or segment is best described as a *radius, chord, diameter, secant,* or *tangent* of \odot C.

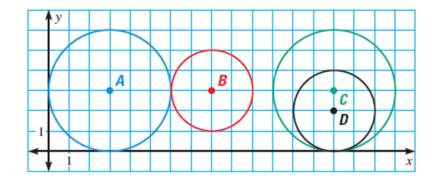
• AC


• DE

o AB

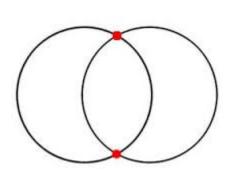
• AE

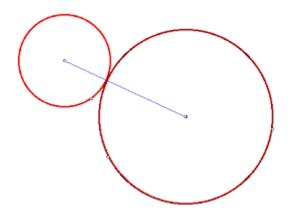
1. In Example 1, what word best describes

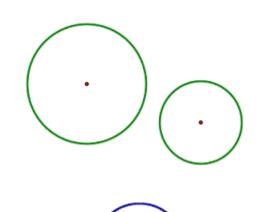

 \overline{AG} ? \overline{CB} ?

2. In Example 1, name a tangent and a tangent segment.

Use the diagram to find the given lengths.

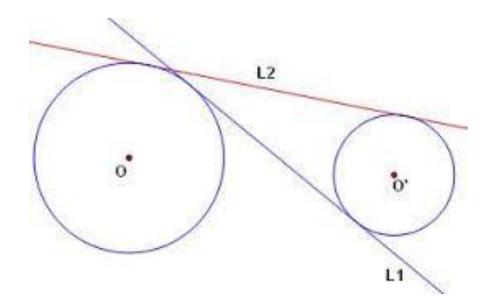

- a. Radius of $\odot A$
- b. Diameter of $\odot A$




- c. Radius of $\odot B$
- d. Diameter of $\odot B$
- 3. Use the diagram in Example 2 to find the radius and diameter of C and D.

Intersections of circles

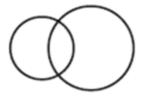
- Tangent circles ______
- Concentric circles have a _____

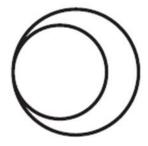


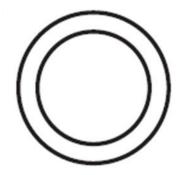
COMMON TANGENTS

- A line that is _____ to ____ to ____
 - A line that ______ each circle at

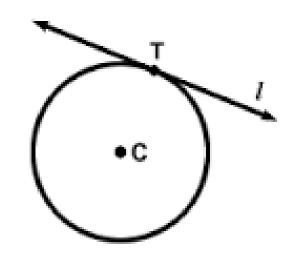
 Tell how many common tangents the circles have and draw them.


a.

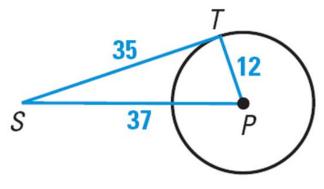

b.


C.

5.

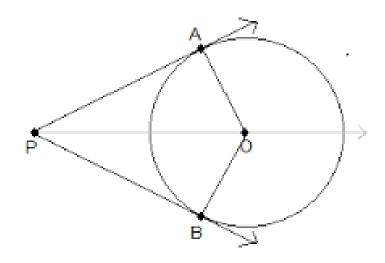


6.


TANGENT LINE THEOREM #1

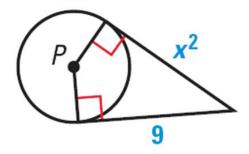
o A line is _______ to a circle if and only if the line is _____ in the circle (a _____ is formed between the ____ and ____)

In the diagram, \overline{PT} is a radius of $\odot P$. Is \overline{ST}


tangent to $\odot P$?

In the diagram, B is a point of tangency. Find the radius r of $\odot C$.

TANGENT LINE THEOREM #2


o Tangent ______ from a _____ are

 \overline{RS} is tangent to \odot C at S and \overline{RT} is tangent to \odot C at T. Find the value of x.

3x + 4

9. Find the value(s) of x.

