Chapter 1 Expressions, Equations, and
 Functions

Sec 1.1 Evaluate Expressions

- Variable
- EX:
- Algebraic Expression - a collection of _ , and without an equal sign.
- EX:
- Evaluate an Expression - to substitute a number for each variable and
- EX:
- Evaluate the expression.
- 0.6x when $x=4$
- $\frac{24}{y}$ when $y=6$
- $\frac{2}{3} \mathrm{a}$ when $\mathrm{a}=\frac{1}{2}$
- $b-\frac{1}{2}$ when $b=\frac{5}{6}$

EX: Evaluate the Expression

- You and your friend are going to see a movie. You pay for both admissions. Your total cost (in dollars) can be represented by the expression 2a, where a is the cost of admission. If each admission costs $\$ 7.75$, what is your total cost?
- Power - an expression that represents
- EX:
- Base - the big, number
- Exponent - the small number that represents
- EX:

EX:

Evaluate the expression.
o x^{3} when $x=8$
o k^{2} when $\mathrm{k}=2.5$

- d^{4} when $d=\frac{1}{2}$
- Exponents are used in the formulas for area and volume.
- Area of a Square:

*image not drawn to scale
- Volume of a Cube:

Each edge of the storage cube shown is 14 inches long. The storage cube is made so that it can be folded flat when not in use.

- Find the area of the storage cube if it is folded flat.
- Find the volume of the storage cube.

Sec 1.2 Apply Order of
Operations

Order of Operations - the correct order for evaluating/simplifying an expression

- Order of Operations:
- P
- simplify expressions inside the parentheses/grouping symbols
o E__ - simplify all powers
- M and D - left to right
- A and \mathbf{S} - left to right
- PEMDAS - "Please Excuse My Dear Aunt Sally"

EX: Evaluate the expressions.

- $27 \div 3^{2} \cdot 2-3$
- $10+2 \cdot 4^{2}$
- $32 \div 2^{3}+6$

Grouping Symbols

- Parentheses:
- Brackets:
- Fraction Bar:
- Note:
- Always start with the grouping symbol and work your way out.
- Always follow the \qquad inside each individual grouping symbol.
- For a fraction bar, do what is and \qquad it before you divide.

EX: Evaluate each expression.

- $4(3+9)$
- $3\left(8-2^{2}\right)$
- $2[(9+3) \div 4]$

EX: Evaluate each expression

 when $y=8$.- $y^{2}-3$
- $10(y+1)$
$y-3$
- You join an online music service. The total cost (in dollars) of downloading 3 singles at $\$.99$ each and 2 albums at $\$ 9.95$ each is given by the expression 3(0.99) + 2(9.95).
- Find the total cost.
- You have $\$ 25$ to spend. How much will you have left?

Sec 1.3 Write
Expressions

To translate verbal phrases into mathematical expressions, look for KEY WORDS.

0
Key Words

- EX: The sum of 8 and a number x

Key Words

- EX: 7 less than a number y
- NOTE: Order matters!

Key Words

- EX: $1 / 2$ of a number z

Key Words

- EX: The quotient of 6 and a number a.
- NOTE: Order matters!
- NOTE: Anytime you multiply or divide a by something, you must put the sum or difference in
- EX: 3 times the sum of 7 and a number y

EX: Write an expression for the situation.

- A piece of rope L feet long is cut from a rope 10 feet long. Write an expression for the length of the remaining piece.
- Each person's share if p people are to divide $\$ 90$ evenly.

EX: Translate the verbal phrase into an expression.

- Three more than half of a number x
- Product of four and a number y
- 4 less than 6 times a number n
- The difference of 22 and the square of a number m
- The quotient when the quantity 10 plus a number x is divided by 2
- Rate - a \qquad that compares two quantities measured in \qquad .
- EX:
- Unit Rate - when the
of the
\qquad
- EX:
- Note:
- ___ to turn a rate into a unit rate.
- When comparing unit rates, make sure your units are the \qquad .

EX: Tell which rate is greater.

- $\$ 3.50$ for 25 ounces, or $\$ 4.75$ for 40 ounces

EX: Find the unit rate in feet per second.

- Note: Multiply by a to convert the units.
- A car travels 150 miles in 3 hours.
- 600 yards/1 minute
- You are ordering Detroit Lions tickets online. Each ticket costs $\$ 55$ and there is a $\$ 6$ charge no matter how many tickets are ordered. Write an expression for the cost (in dollars) of ordering the tickets. Then find the total cost if you order 8 tickets.

Sec 1.4 Write Equations and Inequalities

- Equation - a mathematical sentence with an \qquad
- EX:
- Inequality - a of two expressions
- EX:

Symbols:

Combining Inequalities

- Two \qquad inequalities can be \qquad to form one
- EX: $x>8$ and $x<15$ is the same as:

Read " x is greater than 8 and less than 15"

EX: Write an equation or inequality.

- The difference of twice a number k and 8 is 12 .
- The product of 6 and a number n is at most 24.
- The sum of y and 1 is no less than 5 and no more than 13.
- The quotient of a number p and 12 is at least 30.

EX: Write an equation or inequality and solve.

- Your student senate budget is $\$ 300$. You want to buy the members t-shirts for $\$ 6$ each. Write an inequality that represents the number of shirts you can buy without going over budget.

Sec 1.5
Use a
Problem
Solving Plan

A Problem Solving Plan

- Step 1: Pick out and decide what you are trying to solve for.
- Step 2: Make a \qquad to Solve.
- EX:
- Step 3: the Problem.
- EX:
- Step 4: Check.
- See if your answer is reasonable.

Formula - a

- Formulas that should be memorized:
- Temperature:
- $C=$
- $\mathrm{F}=$
- Simple Interest:
- | =
- $P=$ \qquad
- $r=$
- $\dagger=$ \qquad
- Distance Traveled:
o d=
or $=$
- $\dagger=$
- Profit:
- $P=$

○ $1=$

- $E=$
- Area of a Rectangle:
- | =
- $W=$
- Area of a Triangle:
- $b=$
- $\mathrm{h}=$
- Perimeter:

EX: Solve

- One day this summer the temperature in Ontario, Canada was 30 degree Celsius. The temperature in Monroe, Ml was 95 degrees Fahrenheit. Which temperature was higher?
- What is the interest on $\$ 1500$ invested for 3 years in an account that earns simple interest at a rate of 5% per year?
- A bike travels at a rate of 20 mph . How far will it travel in 6 hours?
- A gardener determines the cost of planting daffodil bulbs to be $\$ 2.40$ per square foot. How much will it cost to plant daffodil bulbs in a rectangular garden that is 12 feet long and 5 feet wide?

Sec 1.6

 Use Precision and Measurement
Precision -

- How \qquad a measurement is.
- Precise measurements in general have:
- More \qquad
- Have \qquad units
- EX: A watch that measures in seconds is more precise than a watch that measures in minutes, because a second in smaller than a minute.
- EX: Which side of the ruler would give a more precise measurement?

EX: Choose the more precise measurement.

- $21.13 \mathrm{oz} ; 21.4 \mathrm{oz}$
- $14 \frac{1}{2} \mathrm{in}$. ; $2 \frac{5}{8} \mathrm{in}$.
- $14 \mathrm{~mm} ; 2 \mathrm{~cm}$
- 2.5 hr ; 90 min

Significant Digits -

- The digits in a
that carry meaning.
- All the digits you when taking a measurement plus the
- EX:

Rules for Determining Sig. Digits

- 1) All \qquad are significant.
- EX: 114.67 has 5 sig dig
- 2) Zeros that are to the ___ of both the last nonzero digit and the decimal point are significant.
- EX: 0.0000500 has 3 sig dig
- 3) between sig digits are significant.
- EX: 7000.8 has 5 sig dig
- 4) Zeros at the \qquad of whole numbers are usually assumed to be nonsignificant.
- EX: 300 has 1 sig dig

EX: Determine the number of sig dig in each measurement.

- 800.20 ft
- 0.0005 cm
- 36,500 yd
- 67.00 m
- 60 sec

Sec 1.7
Represent Functions as Rules and
Tables

Function -

- A set of \qquad (called the
and \qquad (called the ____) such that each input is paired with _output.
- EX: Pumping Gas - the total cost depends on the number of gallons you pumped.
- So the total cost is a function of the number of gallons.

EX: Birthday Function

- People - Domain
- Birthdays - Range
- Each person can only have birthday.
- But, more than one person can have the
- Functions can be represented as tables.
- EX:

Input (days)	Output $(\$)$
1	15
2	20
4	30
6	40
9	55
11	65

EX: Tell whether the pairing is a function.

INPUT OUTPUT

EX: Tell whether the pairing is a function.

- A function may also be represented by an
\qquad .
- \square Variable (x) - input values
Variable (y) - output values
- The value of the dependent variable depends on the value of the independent variable.

EX:

- Rule: The output is 6 less than the input.
- Equation:
- Table:

Input, x	10	9	8	7	6
Output, y					

- Make a table for the function $y=1 / 2 x+4$ with domain 0,5 , and 10 . Then identify the range of the function.
- Write a rule for the function. Then identify the domain and range.

Time (hours)	1	2	3	4
Pay (dollars)	8	16	24	32

- You are buying concert tickets that cost $\$ 15$ each. You can buy up to 6 tickets. Write the amount (in dollars) you spend as a function of the number of tickets you buy. Identify the independent and dependent variables. Then identify the domain and range of the function.

Sec 1.8 Represent Functions as Graphs

Functions

- Functions can also be represented as , by putting the values from a table into \qquad .

Table

Input, x	Output, y
1	2
2	3
4	5

Ordered Pairs
(input, output)
$(1,2)$
$(2,3)$
$(4,5)$
Graph

- NOTE: (x, y)

- Graph the function $\mathrm{y}=2 \mathrm{x}-1$ with the domain 1, 2, 3, 4, and 5 by making a table and then plotting the ordered pairs.

- Write a rule for the function represented by the graph. Identify the domain and the range of the function.

EX:

- Graph the function that represent the enrollment at SMCC since 2004. ($\dagger=0$ corresponds to 2004)
- Describe what happened to the enrollment as time went on.

Years since 2004, \dagger	0	1	2	3	4	5	6	7	8
Enroll ment ,e	398	405	400	410	413	420	427	445	451

\qquad

