Chapter 1 Expressions, Equations, and Functions

Sec 1.1 Evaluate Expressions

• Variable

• EX:

• EX:

• Algebraic Expression – a collection of _____, ____, and _____without an equal sign.

• Evaluate an Expression – to substitute a number for each variable and

• EX:
• Evaluate the expression.
• 0.6x when x = 4

$$o \frac{24}{y}$$
 when y = 6

$$\frac{2}{3}a$$
 when $a = \frac{1}{2}$

•
$$b - \frac{1}{2}$$
 when $b = \frac{5}{6}$

EX: Evaluate the Expression

 You and your friend are going to see a movie. You pay for both admissions. Your total cost (in dollars) can be represented by the expression 2a, where a is the cost of admission. If each admission costs \$7.75, what is your total cost?

• **Power** – an expression that represents

• Base – the big, _____number

• **Exponent** – the small number that represents_____

EX: Evaluate the expression. • x^3 when x = 8

• k^2 when k = 2.5

• d⁴ when d =
$$\frac{1}{2}$$

- Exponents are used in the formulas for area and volume.
- Area of a Square:

• Volume of a Cube:

EX:

Each edge of the storage cube shown is 14 inches long. The storage cube is made so that it can be folded flat when not in use.

- Find the area of the storage cube if it is folded flat.
- Find the volume of the storage cube.

Sec 1.2 Apply Order of Operations

Order of Operations - the correct order for evaluating/simplifying an expression

• Order of Operations:

• P_____ – simplify expressions inside the parentheses/grouping symbols

- E_____ simplify all powers
- M____and D____-left to right
- A _____ and S _____ left to right

• **PEMDAS** – "Please Excuse My Dear Aunt Sally"

EX: Evaluate the expressions.

\circ 27 ÷ 3² · 2 – 3

○ 10 + 2·4²

• $32 \div 2^3 + 6$

Grouping Symbols

- Parentheses:
- Brackets:
- Fraction Bar:
- Note:
- Always start with the ______ grouping symbol and work your way out.
- Always follow the ______ inside each individual grouping symbol.
- For a fraction bar, do what is ______ and ______ it before you divide.

EX: Evaluate each expression. • 4(3 + 9)

○ 3(8 – 2²)

• 2[(9 + 3) ÷ 4]

EX: Evaluate each expression when y = 8.

• y² - 3

EX:

You join an online music service. The total cost (in dollars) of downloading 3 singles at \$.99 each and 2 albums at \$9.95 each is given by the expression 3(0.99) + 2(9.95).
Find the total cost.

• You have \$25 to spend. How much will you have left?

Sec 1.3 Write Expressions To translate verbal phrases into mathematical expressions, look for KEY WORDS.

• Key Words

• EX: The sum of 8 and a number x

Key Words

• EX: 7 less than a number y

• NOTE: Order matters!

0

• Key Words

• EX: $\frac{1}{2}$ of a number z

Key Words

• EX: The quotient of 6 and a number a.

• NOTE: Order matters!

0

• NOTE: Anytime you multiply or divide a by something, you must put the sum or difference in

• EX: 3 times the sum of 7 and a number y

EX: Write an expression for the situation.

• A piece of rope L feet long is cut from a rope 10 feet long. Write an expression for the length of the remaining piece.

• Each person's share if p people are to divide \$90 evenly.

EX: Translate the verbal phrase into an expression.

• Three more than half of a number x

• Product of four and a number y

• 4 less than 6 times a number n

• The difference of 22 and the square of a number m

• The quotient when the quantity 10 plus a number x is divided by 2

- Rate a ______ that compares two quantities measured in _____.
 EX:
- Unit Rate when the ______
 of the ______.
 EX:

- Note:
- to turn a rate into a unit rate.
 When comparing unit rates, make sure your units are the _____.

EX: Tell which rate is greater. \$3.50 for 25 ounces, or \$4.75 for 40 ounces

EX: Find the unit rate in feet per second.

- Note: Multiply by a _ to convert the units.
- A car travels 150 miles in 3 hours.

• 600 yards/1 minute

EX:

• You are ordering Detroit Lions tickets online. Each ticket costs \$55 and there is a \$6 charge no matter how many tickets are ordered. Write an expression for the cost (in dollars) of ordering the tickets. Then find the total cost if you order 8 tickets.

Sec 1.4 Write Equations and Inequalities
• Equation – a mathematical sentence with an _____

• EX:

Inequality – a ______ of two expressions
EX:

Symbols:

Combining Inequalities

• Two ______ inequalities can be ______to form one

• EX: x > 8 and x < 15 is the same as:

Read "x is greater than 8 and less than 15"

EX: Write an equation or inequality.

• The difference of twice a number k and 8 is 12.

• The product of 6 and a number n is at most 24.

• The sum of y and 1 is no less than 5 and no more than 13.

• The quotient of a number p and 12 is at least 30.

EX: Write an equation or inequality and solve.

• Your student senate budget is \$300. You want to buy the members t-shirts for \$6 each. Write an inequality that represents the number of shirts you can buy without going over budget.

Sec 1.5 Use a Problem Solving Plan

A Problem Solving Plan

- Step 2: Make a _____ to Solve. • EX:
- Step 3: _____ the Problem. • EX:

• Step 4: Check.

• See if your answer is reasonable.

Formula – a ____

Formulas that should be memorized:
Temperature:

• Distance Traveled:

• Profit:

• Area of a Rectangle:

• | = _____

• w = _____

• Area of a Triangle:

- b = _____
- h = _____

• Perimeter:

EX: Solve

 One day this summer the temperature in Ontario, Canada was 30 degree Celsius. The temperature in Monroe, MI was 95 degrees Fahrenheit. Which temperature was higher?

• What is the interest on \$1500 invested for 3 years in an account that earns simple interest at a rate of 5% per year?

• A bike travels at a rate of 20 mph. How far will it travel in 6 hours?

• A gardener determines the cost of planting daffodil bulbs to be \$2.40 per square foot. How much will it cost to plant daffodil bulbs in a rectangular garden that is 12 feet long and 5 feet wide?

Sec 1.6 Use Precision and Measurement

Precision -

- How ______ a measurement is.
 Precise measurements in general have:
 More ______
 - Have ______units
- EX: A watch that measures in seconds is more precise than a watch that measures in minutes, because a second in smaller than a minute.

• EX: Which side of the ruler would give a more precise measurement?

EX: Choose the more precise measurement.

• 21.13 oz ; 21.4 oz

• 14
$$\frac{1}{2}$$
 in. ; 2 $\frac{5}{8}$ in.

• 14 mm ; 2 cm

• 2.5 hr; 90 min

Significant Digits -

- The digits in a _____ that carry meaning.

Rules for Determining Sig. Digits

- 1) All _____are significant.
 - EX: 114.67 has 5 sig dig
- 2) Zeros that are to the <u>of both</u> the last nonzero digit and the decimal point are significant.
 - EX: 0.0000500 has 3 sig dig
- 3) _____between sig digits are significant.
 - EX: 7000.8 has 5 sig dig
- 4) Zeros at the _____ of whole numbers are usually assumed to be nonsignificant.
 EX: 300 has 1 sig dig

EX: Determine the number of sig dig in each measurement.

- 800.20 ft
- 0.0005 cm
- 36,500 yd
- o 67.00 m
- 60 sec

Sec 1.7 Represent Functions as Rules and Tables

Function -

• A set of _____ (called the _____) and _____ (called the _____) such that each input is paired with

- _output.
- EX: Pumping Gas the total cost depends on the number of gallons you pumped.
 - So the total cost is a **function** of the number of gallons.

EX: Birthday Function

- People Domain
- Birthdays Range
- Each person can only have _____ birthday.

• But, more than one person can have the

Functions can be represented as tables.EX:

Input (days)	Output (\$)
1	15
2	20
4	30
6	40
9	55
11	65

EX: Tell whether the pairing is a function.

EX: Tell whether the pairing is a function.

	_	_	_	_	_	_
Input						
Output						

• A function may also be represented by an

- Variable (x) input values
- Variable (y) output values
 - The value of the dependent variable **depends** on the value of the independent variable.

Rule: The output is 6 less than the input.
Equation:

• Table:

Input, x	10	9	8	7	6
Output, y					

• Make a table for the function $y = \frac{1}{2}x + 4$ with domain 0, 5, and 10. Then identify the range of the function.

• Write a rule for the function. Then identify the domain and range.

Time (hours)	1	2	3	4
Pay (dollars)	8	16	24	32

• You are buying concert tickets that cost \$15 each. You can buy up to 6 tickets. Write the amount (in dollars) you spend as a function of the number of tickets you buy. Identify the independent and dependent variables. Then identify the domain and range of the function.

Sec 1.8 Represent Functions as Graphs
Functions

Functions can also be represented as _____, by putting the values from a

table into

• NOTE: (x, y)

EX:

 Graph the function y = 2x – 1 with the domain 1, 2, 3, 4, and 5 by making a table and then plotting the ordered pairs.

		у 📥				
		6				
		5				
		4				
		β				
		2				
		1				
						x
		<u> </u>			<u> </u>	
-0 -2 -4	4 -3 -2 -	1 0	1 2	3	45	0
-6 -2 -4	4 -3 -2 -	1 -1	1 2	3	4 5	0
-6 -2 -4	4 -3 -2 -	1 • -1 -2	1 2	3	4 5	0
	4 -3 -2 -	1 -1 -2 -3	1 2	3	4 5	0
	4 -3 -2 -	1 -1 -2 -3	1 2	3	4 5	0
	4 -3 -2 -	1 -1 -2 -3 -4 -5	1 2	3	4 5	

EX:

• Write a rule for the function represented by the graph. Identify the domain and the range of the function.

EX:

• Graph the function that represent the enrollment at SMCC since 2004. (t = 0 corresponds to 2004)

• Describe what happened to the enrollment as time went on.

Years since 2004, t	0	1	2	3	4	5	6	7	8
Enroll ment , e	398	405	400	410	413	420	427	445	451

Name : _____

Math Resources and Worksheets @ www.mathworksheets4kids.com