Chapter 5
Relationships within Triangles
5.1

MIDSEGMENT THEOREM

Midsegment of a Triangle

- A that the \qquad of of the triangle.
- All triangles have \qquad midsegments.

Midsegment Theorem

- The midsegment of
 of a triangle is of the triangle.
- It is also \qquad as the \qquad

EX: Find x.

EX: DE is the midsegment of Triangle ABC. Find x.

EX: Complete each statement

 using the following information.

EX: Use the diagram, where D,

 E , and F are midpoints.- If $D E=3 x+8$ and $B C=2 x+24$, what is $A B$?

EX: Place the figure in a coordinate plane in a convenient way. Assign coordinates to each vertex.

- Right triangle: leg lengths are 4 units and 5 units

- Isosceles triangle: leg length 6

- Rectangle: length is r and width is s

5.2 PERPENDICULAR BISECTORS

Perpendicular Bisector

- A segment, ray, or line that is to a segment and \qquad at its

Perpendicular Bisector Theorem

- Any
on the
of a segment is from the \qquad of the segment.

Converse of the Perpendicular Bisector Theorem

- If a \qquad is \qquad from the \qquad of a segment, then the is on the of the segment.

EX: Find x.

$\overleftrightarrow{B D}$ is the perpendicular bisector of $\overline{A C}$. Find $A D$.

In the diagram, $\overleftrightarrow{W X}$ is the perpendicular bisector of $\overline{Y Z}$. What segment lengths in the diagram are equal?

Is V on $W X$?

EX:

What is $W r$?

$$
w Y=\square
$$

Perpendicular Bisectors of a Triangle

- The perpendicular bisectors of a triangle \qquad at \qquad that is \qquad from the \qquad of the triangle.

EX:

3. In this diagram, the perpendicular bisectors of $\triangle A B C$ meet at point G. Find $E C$ and $G C$.

5.3

ANGLE BISECTORS

Angle Bisector

- Divides an angle

Distance from a Point to a Line

- The \qquad from the point to the line.

Angle Bisector Theorem

- If a \qquad is on the of an angle, then it is the from the \qquad of the angle.

Converse of the Angle Bisector Theorem

- If a \qquad is the from the sides of an angle, then it is on the of the angle.

Find the measure of $\angle G F J$.

EX:

For what value of x does P lie on the bisector of $\angle A$?

EX: Find x.

4. Do you have enough information to conclude that $\overrightarrow{Q S}$ bisects $\angle P Q R$? Explain.

EX: Find x.

2.

Angle Bisectors of a Triangle

- The angle bisectors of a triangle that is the \qquad from the \qquad of the triangle.
- This \qquad is called the \qquad .

EX: Find x and y.

Pythagorean Theorem

- For a \qquad with legs \qquad and hypotenuse \qquad , the Pythagorean Theorem says \qquad .

EX: Find the missing sides in each triangle.

EX:

3. Point D is the incenter of $\triangle X Y Z$. Find $D B$.

5.4 USE MEDIANS AND ALTITUDES

Median of a Triangle

- The segment from the \qquad to the of the \qquad .
- The \qquad where the \qquad of a triangle meet is called the \qquad .

Medians of a Triangle Theorem

- The medians of a triangle that is \qquad of the distance from
of the opposite side. to the \qquad of the opposite side.

EX:

In $\triangle R S T, Q$ is the centroid and $S Q=8$. Find $Q W$ and SW.

EX:

In Exercises 1-3, use the diagram.
G is the centroid of $\triangle A B C$.

If $B G=9$, find $B F$.

If $B D=12$, find $A D$.

If $C D=27$, find $G C$.

There are three paths through a triangular park. Each path goes from the midpoint of one edge to the opposite corner. The paths meet at point P.

If $P T=800$ feet, find $P A$ and $T A$.

EX: Point C is the centroid. Use the information to find x .

Altitude of a Triangle

\qquad

- The from a or the .

Some Examples of altitudes of triangles.

Orthocenter

- The where the or the \qquad of a triangle
\qquad .

5.5

USE INEQUALITIES IN A TRIANGLE

Comparing Triangle Sides and Angles

- In a triangle:
 have opposite of them.
have
opposite them.

EX: List the sides and angles in order from smallest to largest.

1. List the sides of $\triangle R S T$ in order from shortest to longest.

EX: Standardized Test Practice

STAGE PROP You are constructing a stage prop that shows a large triangular mountain. The bottom edge of the mountain is about 27 feet long, the left slope is about 24 feet long, and the right slope is about 20 feet long. You are told that one of the angles is about 46° and one is about 59°. What is the angle measure of the peak of the mountain?

(A) 46°
(B) 59°
(C) 75°
(D) 85°

Triangle Inequality Theorem

EX: Show that the Triangle Inequality Theorem holds true for this triangle.

EX: Is it possible to construct a triangle with the given side lengths? Explain.
-5.5, 6, 11

- 6, 11, 21

EX: Describe the possible lengths of the third side of the triangle given the other two sides.

- 12 inches, 8 inches
- 11 feet, 15 feet

