Chapter 5 Relationships within Triangles

5.1 MIDSEGMENT THEOREM

Midsegment of a Triangle

Midsegment Theorem

•	The midsegment of _		of a triangle is
		to the	
	of the triangle.		
•	It is also	as	the
		•	
	A	C M D M	E

EX: Find x.

EX: DE is the midsegment of Triangle ABC. Find x.

EX: Complete each statement using the following information.

EX: Use the diagram, where D, E, and F are midpoints.

• If DE = 3x + 8 and BC = 2x + 24, what is AB?

EX: Place the figure in a coordinate plane in a convenient way. Assign coordinates to each vertex.

• Right triangle: leg lengths are 4 units and 5 units

• Isosceles triangle: leg length 6

• Rectangle: length is *r* and width is *s*

5.2 PERPENDICULAR BISECTORS

Perpendicular Bisector

 A segment, ray, to a segment a 		is	at its	
to a segment a	nu			
		_		
	1	•		
			2	
Α			• B	

Perpendicular Bisector Theorem

Converse of the Perpendicular Bisector Theorem

EX: Find x.

\overrightarrow{BD} is the perpendicular bisector of \overrightarrow{AC} . Find *AD*.

In the diagram, \overrightarrow{WX} is the perpendicular bisector of \overrightarrow{YZ} .

What segment lengths in the diagram are equal?

ls V on WX?

Perpendicular Bisectors of a Triangle

• The perpendicular bisectors of a triangle

at	that is	v
from the		
of the triangle.		
	A	

3. In this diagram, the perpendicular bisectors of $\triangle ABC$ meet at point *G*. Find *EC* and *GC*.

5.3 ANGLE BISECTORS

Angle Bisector

• Divides an angle _____

Distance from a Point to a Line

• The ______ from the point to the line.

Angle Bisector Theorem

• If a	_ is on the	
of an angle, then it is the _		
from the	of the angle.	

Converse of the Angle Bisector Theorem

If a ______ is the ______
 from the sides of an angle, then it is on the ______
 ______ of the angle.

Find the measure of $\angle GFJ$.

For what value of x does P lie on the bisector of $\angle A$?

4. Do you have enough information to conclude that \overrightarrow{QS} bisects $\angle PQR$? *Explain.*

EX: Find x.

Angle Bisectors of a Triangle

The angle bisectors of a triangle		at
	that is the	
from the	of the triangle.	
• This	is called the	•

EX: Find x and y.

Pythagorean Theorem

 For a ______ with legs ______ and hypotenuse _____, the Pythagorean Theorem says______.

EX: Find the missing sides in each triangle.

3. Point *D* is the incenter of $\triangle XYZ$. Find *DB*.

5.4 USE MEDIANS AND ALTITUDES

Median of a Triangle

Medians of a Triangle Theorem

In $\triangle RST$, Q is the centroid and SQ = 8. Find QW and SW.

In Exercises 1–3, use the diagram. *G* is the centroid of $\triangle ABC$.

If BG = 9, find BF.

If BD = 12, find AD.

If CD = 27, find GC.

There are three paths through a triangular park. Each path goes from the midpoint of one edge to the opposite corner. The paths meet at point *P*.

If PT = 800 feet, find PA and TA.

EX: Point C is the centroid. Use the information to find x.

Altitude of a Triangle

Some examples of altitudes of triangles.

Orthocenter

5.5 USE INEQUALITIES IN A TRIANGLE

Comparing Triangle Sides and Angles

• In a triangle:

EX: List the sides and angles in order from smallest to largest.

1. List the sides of $\triangle RST$ in order from shortest to longest.

EX: Standardized Test Practice

STAGE PROP You are constructing a stage prop that shows a large triangular mountain. The bottom edge of the mountain is about 27 feet long, the left slope is about 24 feet long, and the right slope is about 20 feet long. You are told that one of the angles is about 46° and one is about 59°. What is the angle measure of the peak of the mountain?

Triangle Inequality Theorem

EX: Show that the Triangle Inequality Theorem holds true for this triangle.

EX: Is it possible to construct a triangle with the given side lengths? Explain.

• 5.5, 6, 11

EX: Describe the possible lengths of the third side of the triangle given the other two sides.

• 12 inches, 8 inches

• 11 feet, 15 feet