Chapter 6 Confidence Intervals

6.1 Confidence Intervals for the Mean

Estimating Population Parameters

- * You can use ______to estimate the value of an ______
- * Point estimate a _______
 estimate for a population parameter.
 - * The sample _____ is a point estimate of the population _____.
 - * Remember from Chapter 5 they are _____

 * An economics researcher is collecting data about grocery store employees in a county. The data listed represents a random sample of the number of hours worked by 20 employees from several grocery stores in the county. Find a point estimate of the population mean μ.

30	27	37	33	23	35	40	23	31	33
44	39	29	26	22	30	39	41	38	39

Interval Estimates

*	In the previous example, it is						
	that the population in						
		_ the sample mean.					
*	So instead of using a _		,				
	you can use an						
		•					
	* You can	that the					
	lie	es in an	•				

