## CHAPTER 6 SOLVING SYSTEMS OF EQUATIONS AND INEQUALITIES

## 6.1 <br> SOLVE LINEAR SYSTEMS BY GRAPHING

## SYSTEMS OF LINEAR EQUATIONS

- System of Linear Equations -
 equations to be $\qquad$ at the $\qquad$
- EX:
- Solution of a System of Linear Equations - an $\qquad$
$\square$ that satisfies in the system.
- EX:


## METHOD 1: SOLVING BY GRAPHING

- 1) Graph $\qquad$ equations in the $\qquad$
- Use $\qquad$ form.
- Use your slope to go up and over $\qquad$ .
- 2) The $\qquad$ where the two lines $\qquad$ in the $\qquad$ .



## EX: SOLVE THE LINEAR SYSTEM BY GRAPHING.

- $x-y=5$
- $3 x+y=3$


- $2 x+y=-3$
- $-6 x+3 y=3$




## 6.2 <br> SOLVE LINEAR SYSTEMS BY SUBSTITUTION

## METHOD 2: SOLVING BY SUBSTITUTION

- 1) Solve ______ of the equations for
- Pick the variable that is $\qquad$ .
- 2) 


the expression from
into the and $\qquad$

- 3) 

 the value from into of the equations and for the $\qquad$

## NOTEB00K EXAMPLE \#1: SOLVE USING SUBSTITUTION.

- $y=2 x+5$
- $3 x+y=10$
- $3 x+y=-7$
- $-2 x+4 y=0$
- $x+\frac{1}{3} y=-2$
- $-8 x-\frac{2}{3} y=4$


## EX:

- Kara spends \$16 on tubes of paint and disposable brushes for an art project. Each tube of paint costs \$3 and each disposable brush costs $\$ 0.50$. Kara purchases twice as many brushes as tubes of paint. Find the number of each that she bought.



## EX:

- A chemist needs 15 liters of a $60 \%$ alcohol solution. The chemist has a solution that is $50 \%$ alcohol. How many liters of the $50 \%$ alcohol solution and pure alcohol should the chemist mix together to make 15 liters of a $60 \%$ alcohol solution?

6.3

SOLVE LINEAR SYSTEMS BY ADDING OR SUBTRACTING

## METHOD 3: SOLVING BY ELIMINATION

- 1) 

the equations to $\qquad$ one variable.

- Make sure $\qquad$ are $\qquad$ .
- 2) Solve the $\square$ for the $\qquad$ variable.
- 3) the value from into _-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_ and $\qquad$ for the -


## NOTEBOOK EXAMPLE \#2: SOLVE BY ELIMINATION

- $4 \mathrm{x}-3 \mathrm{y}=5$
- $-2 x+3 y=-7$
- $7 x-2 y=5$
- $7 x-3 y=4$
- $3 x+4 y=-6$
- $2 y=3 x+6$


## EX:

- During a kayak trip, a kayaker travels 12 miles upstream (against the current) in 3 hours and 12 miles downstream (with the current) in 2 hours. The speed of the kayak remained constant throughout the trip. Find the speed of the kayak in still water and the speed of the current.
http://www.physicsclassroom.com/mmedia/vectors/plane.cfm Riverboat Simulator




## EX:

- A business center charges a flat fee to send faxes plus a fee per page. You send one fax with 4 pages for $\$ 5.36$ and another fax with 7 pages for $\$ 7.88$. Find the flat fee and the cost per page.



# 6.4 <br> SOLVE LINEAR SYSTEMS BY MULTIPLYING FIRST 

## METHOD 3: SOLVING BY ELIMINATION

- Sometimes you may have to $\square$ one or both equations by a $\qquad$ to create that are of each other.
- Doing this will allow you to $\qquad$ a variable when the equations are $\qquad$ -.


## NOTEBOOK EXAMPLE \#3: SOLVE BY ELIMINATION

- $2 x+5 y=3$
- $3 x+10 y=-3$
- $8 x-5 y=11$
- $4 \mathrm{x}-3 \mathrm{y}=5$
- $3 x-7 y=5$
- $9 y=5 x+5$


## EX:

- Dunham's is having a sale on soccer balls. A soccer coach purchases 10 soccer balls and 2 soccer ball bags for $\$ 155$. Another coach purchases 12 soccer balls and 3 soccer ball bags for \$189. Find the cost of a soccer ball and the cost of a soccer ball bag.



## 6.5 SOLVE SPECIAL TYPES OF LINEAR SYSTEMS

- A system of equations has $\qquad$ if the lines are $\qquad$ .
- Same $\qquad$ .
- Different $\qquad$ _.
- Called an $\qquad$

- A system of equations has solutions if the lines are $\qquad$ .
- Same $\qquad$ .
- Same $\qquad$ .
- Called a $\qquad$

- A system of equations has if the lines .
- Different $\qquad$ .
- Called _-_-_-_-_-_-_-_-_-_-_-_-_-_-_



## SUMMARY:



## NOTEBOOK EXAMPLE \#4 SOLVE THE SYSTEM USING SUBSTITUTION OR ELIMINATION.

- $5 x+3 y=6$
- $15 x+9 y=8$
- $y=2 x-4$
- $-6 x+3 y=-12$
- $3 x-2 y=-5$
- $4 x+5 y=47$


## NOTEB00K EXAMPLE \#5

- Without solving the linear system, tell whether it has one solution, no solution, or infinitely many solutions.
- $5 x+y=-2$
- $-10 x-2 y=4$
- $6 x+2 y=3$
- $6 x+2 y=-5$


## EX:

- A pizza parlor fills two pizza orders. Is there enough information to determine the cost of one medium pizza?

| Medium | Large | Cost |
| :--- | :--- | :--- |
| 4 | 12 | $\$ 168$ |
| 8 | 24 | $\$ 336$ |



