CHAPTER 6 SOLVING SYSTEMS OF EQUATIONS AND INEQUALITIES

6.1 SOLVE LINEAR SYSTEMS BY GRAPHING

SYSTEMS OF LINEAR EQUATIONS

METHOD 1: SOLVING BY GRAPHING

EX: SOLVE THE LINEAR SYSTEM BY GRAPHING.

x - y = 5
3x + y = 3

6.2 SOLVE LINEAR SYSTEMS BY SUBSTITUTION

METHOD 2: SOLVING BY SUBSTITUTION

1) Solve	_ of the equations for			
Pick the variable that is				
	the expression from and			
 3) for the 	the value from into of the equations and)		

NOTEBOOK EXAMPLE #1: SOLVE USING SUBSTITUTION.

- y = 2x + 5
- 3x + y = 10
- 3x + y = -7
 -2x + 4y = 0
- $x + \frac{1}{3}y = -2$ • $-8x - \frac{2}{3}y = 4$

Kara spends \$16 on tubes of paint and disposable brushes for an art project. Each tube of paint costs \$3 and each disposable brush costs \$0.50. Kara purchases twice as many brushes as tubes of paint. Find the number of each that she bought.

A chemist needs 15 liters of a 60% alcohol solution. The chemist has a solution that is 50% alcohol. How many liters of the 50% alcohol solution and pure alcohol should the chemist mix together to make 15 liters of a 60% alcohol solution?

6.3 SOLVE LINEAR SYSTEMS BY ADDING OR SUBTRACTING

METHOD 3: SOLVING BY ELIMINATION

 1) one variable. 	the equations to
Make sure	are
2) Solve the variable.	for the
 3) into for the 	the value from and

NOTEBOOK EXAMPLE #2: SOLVE BY ELIMINATION

- 4x 3y = 5
- -2x + 3y = -7
- 7x 2y = 5
- 7x 3y = 4
- 3x + 4y = -6
 2y = 3x + 6

During a kayak trip, a kayaker travels 12 miles upstream (against the current) in 3 hours and 12 miles downstream (with the current) in 2 hours. The speed of the kayak remained constant throughout the trip. Find the speed of the kayak in still water and the speed of the current.

http://www.physicsclassroom.com/mmedia/vectors/plane.cfm Riverboat Simulator

A business center charges a flat fee to send faxes plus a fee per page. You send one fax with 4 pages for \$5.36 and another fax with 7 pages for \$7.88. Find the flat fee and the cost per page.

6.4 SOLVE LINEAR SYSTEMS BY MULTIPLYING FIRST

METHOD 3: SOLVING BY ELIMINATION

Sometimes you may have to	one or
both equations by a	to create
that are	of
each other.	
Doing this will allow you to the equations are	a variable when

NOTEBOOK EXAMPLE #3: SOLVE BY ELIMINATION

- 2x + 5y = 3
- 3x + 10y = -3
- 8x 5y = 11
- 4x 3y = 5
- 3x 7y = 5
 9y = 5x + 5

Dunham's is having a sale on soccer balls. A soccer coach purchases 10 soccer balls and 2 soccer ball bags for \$155. Another coach purchases 12 soccer balls and 3 soccer ball bags for \$189. Find the cost of a soccer ball and the cost of a soccer ball bag.

6.5 SOLVE SPECIAL TYPES OF LINEAR SYSTEMS

SUMMARY:

NOTEBOOK EXAMPLE #4 SOLVE THE SYSTEM USING SUBSTITUTION OR ELIMINATION.

- 5x + 3y = 6
- 15x + 9y = 8
- y = 2x 4
- -6x + 3y = -12
- 3x 2y = -5
 4x + 5y = 47

NOTEBOOK EXAMPLE #5

- Without solving the linear system, tell whether it has one solution, no solution, or infinitely many solutions.
- 5x + y = -2
 -10x 2y = 4
 6x + 2y = 3
- 6x + 2y = -5

EX:

A pizza parlor fills two pizza orders. Is there enough information to determine the cost of one medium pizza?

Medium	Large	Cost
4	12	\$168
8	24	\$336