Chapter 6 Similarity

6.1
 Use Similar Polygons

Similar Polygons

- Polygons are similar if:
- Corresponding \qquad
\qquad
- AND
- Corresponding \qquad are \qquad
- Similar Symbol: \qquad

EX: The two triangles are similar.

- List all pairs of congruent angles.

- Write the ratios of the corresponding sides in a statement of proportionality.

EX: EDCBA ~ TSRQP

- List all pairs of congruent angles.

- Write the ratios of the corresponding sides in a statement of proportionality.

EX:

1. Given $\triangle J K L \sim \triangle P Q R$, list all pairs of congruent angles. Write the ratios of the corresponding side lengths in a statement of proportionality.

Scale Factor

- If two polygons are , the of the of two is called the

EX: Find the scale factor for each.

- ABCD to QRST

In the diagram, $A B C D \sim Q R S T$.

- QRST to ABCD

Determine whether the polygons are similar. If they are, write a similarity statement and find the scale factor of $Z Y X W$ to $F G H J$.

-

Finding Missing Side Lengths in Similar Polygons

- Since similar polygons have sides that are
\qquad
to solve for a
, To \qquad , use

EX: Solve for c.

EX: Solve for x, y, and z .

EX: Solve for x and y .

Perimeters

- All sides \qquad up.
- If two polygons are \qquad is equal to the of
- Both are also to the
of the polygons.

EXAMPLE 4 Find perimeters of similar figures

Swimming

A town is building a new swimming pool. An Olympic pool is rectangular with length 50 meters and width 25
 meters. The new pool will be similar in shape, but only 40 meters long.
a. Find the scale factor of the new pool to an Olympic pool.

EXAMPLE 4 Find perimeters of similar figures

b. Find the perimeter of an Olympic pool and the new pool.

Corresponding Lengths in Similar Polygons

- If two polygons are \qquad , then the of any two
in the polygons is \ldots of the polygons.
, Examples:

EXAMPLE 5 Use a scale factor

In the diagram, $\triangle T P R \sim \triangle X P Z$. Find the length of the altitude $\overline{P S}$.

EX:

GUIDED PRAC TICE for Example 5

7. In the diagram, $\triangle J K L \sim \triangle E F G$. Find the length of the median $\overline{K M}$.

6.3
 Prove Triangles Similar by AA

Angle-Angle Similarity Postulate (AA)

- If of one triangle are to another triangle, the triangles are

EX:

Determine whether the triangles are similar. If they are, write a similarity statement. Explain your reasoning.

EX: Show that the triangles are similar.

a.
$\triangle A B E$ and $\triangle A C D$

b.
$\Delta S V R$ and $\triangle U V T$

Determine if the two triangles are similar. If they are write a similarity statement.

EX:
Find the length of $\overline{B C}$
3.

Indirect Measurement

Calculating the of an object, without
 \qquad .

Big Idea

Similar triangles can be used
to measure an object
indirectly.
thee height $=$ person height
tree shodow person shodow

EX:

A flagpole casts a shadow that is 50 feet long. At the same time, a woman standing nearby who is five feet four inches tall casts a shadow that is 40 inches long. How tall is the flagpole to the nearest foot?
(A) 12 feet
(B) 40 feet
(C) 80 feet
(D) 140 feet

EX:

- A tree casts a shadow that is 30 feet long. At the same time a person is standing nearby, who is 5 feet tall, casts a shadow that is 4 feet long. How tall is the tree?

6.4
 Prove Triangles Similar by SSS and SAS

Side-Side-Side (SSS) Similarity Postulate

- If the of two triangles are __ , then the triangles are \qquad

EX: Is either $\triangle D E F$ or $\triangle G H J$ similar to $\triangle A B C$?

EX:

1. Verify that $\triangle A B C \sim \triangle D E F$ for the given information.

$$
\begin{aligned}
& \triangle A B C: A C=6, A B=9, B C=12 \\
& \triangle D E F: D F=2, D E=3, E F=4
\end{aligned}
$$

EX:

1. Which of the three triangles are similar? Write a similarity statement.

Find the value of x that makes $\triangle A B C \sim \triangle D E F$. EX:

Side-Angle-Side (SAS) Similarity Postulate

- If an \qquad of one triangle is an of another triangle and the \qquad including this are \qquad then the triangles are \qquad .

EX:

2. Show that the triangles are similar and write a similarity statement. Explain your reasoning.

EX:

Tell what method you would use to show that the triangles are similar.

EX:

Explain how to show that the indicated triangles are similar.
3. $\triangle S R T \sim \triangle P N Q$

EX:

Explain how to show that the indicated triangles are similar.
4. $\triangle X Z W \sim \triangle Y Z X$

6.5

Use Proportionality Theorems

Triangle Proportionality Theorem

- If a line to one of
\qquad
, then it divides the

Converse of the Triangle Proportionality Theorem

- If a divides of a triangle then it is to the

EX: Find x.

EX:

In the diagram, $\overline{Q S} \| \overline{U T}, R S=4, S T=6$, and $Q U=9$. What is the length of $\overline{R Q}$?

EX:

2. Determine whether $\overline{P S} \| \overline{Q R}$.

Shoerack

On the shoerack shown, $A B=33 \mathrm{~cm}, B C=27 \mathrm{~cm}$, $C D=44 \mathrm{~cm}$, and $D E=25 \mathrm{~cm}$, Explain why the gray shelf is not parallel to the floor.

Parallel Lines Theorem

- If intersect then they the \qquad -

EX: Find the length of AB.

3.

City Travel

In the diagram, $\angle 1, \angle 2$, and $\angle 3$ are all congruent and $G F=120$ yards, $D E=150$ yards, and $C D=$ 300 yards. Find the distance $H F$ between Main Street and South Main Street.

Angle Bisector Theorem

- If a \qquad an angle of a triangle, then it the into \qquad whose lengths are to the lengths of the

EX: Find the value of the variable.

EX:

EX:

In the diagram, $\angle Q P R \cong \angle R P S$. Use the given side lengths to find the length of $\overline{R S}$.

