Chapter 8
Polynomials and Factoring
8.1

Add and Subtract Polynomials

Monomial

- A \qquad
- EX:
- Degree of a monomial - the of all of the of the
- EX: $4 x^{2} y$

Polynomial

- A

or

- EX:
- Degree of a polynomial - the of its terms
- EX: $2 \mathrm{x}^{2}+5 \mathrm{x}+7$
- Leading coefficient - the coefficient of the when the polynomial is written in
- EX: $2 \mathrm{x}^{2}+5 \mathrm{x}+7$

EX:

- Write the polynomial so that the exponents decrease from left to right. Identify the degree and the leading coefficient.
- $7-5 y^{3}$
- $-5+2 x^{2}+x^{3}-7 x$
- Binomial - a polynomial with
- EX:
- Trinomial - a polynomial with
- EX:

To add polynomials -

- Add
- REMEMBER: You can only add if the AND the
the same.
- EX: Find the sum.
- $\left(6 a^{2}-4\right)+\left(2 a^{2}-9\right)$
- EX: Find the sum.
- $\left(5 x^{3}+4 x-2 x\right)+\left(4 x^{2}+3 x^{3}-6\right)$

To subtract polynomials -

- Distribute the \qquad then \qquad
- Make sure to
distributing the negative.
- EX: Find the difference.
- $\left(4 n^{2}+5\right)-\left(-2 n^{2}+2 n-4\right)$
- EX: Find the difference.
- $\left(4 x^{2}-7 x\right)-\left(5 x^{2}+4 x-9\right)$

EX:

- Write a polynomial that represents the perimeter of the figure.
- All sides added up.

Major League Baseball teams are divided into two leagues. During the period 1995-2001, the attendance (in thousands) at National (N) and American (A) games can be modeled by:

- $\mathrm{N}=-488 \mathrm{t}^{2}+5430 \mathrm{t}+24,700$
- $A=-318 t^{2}+3040 t+25,600$
- Where t is the number of years since 1995. About how many total people attended games in 2001?
8.2

Multiplying Polynomials

To multiply polynomials:

 everything in the to everything in the \qquad- REMEMBER: When you like bases, \qquad the exponents.

EX: Find the product.

- $x\left(2 x^{3}-7 x^{2}+4\right)$
- $(x-2)\left(x^{2}+2 x+1\right)$
- $\left(3 y^{2}-y+5\right)(2 y-3)$

FOIL Method

- When multiplying _ you can use the FOIL Method.
- The FOIL Method is the but in a \qquad
- Multiply:
- Firsts
- Outers
- Inners
- Lasts

FOIL Method

Firsts

$(a+b)(c+d)$

EX: Find the product.

- $(4 b-5)(b-2)$
- $(6 n-1)(n+5)$
- $(2 x+3 y)^{2}$

EX: Simplify the expression.

- $-3 x^{2}(x+11)-(4 x-5)(3 x-2)$

EX:

- Write a polynomial that represents the area of the shaded region.

- You are planning to build a walkway that surrounds a rectangular garden, as shown. The width of the walkway is the same on every side.
- Write a polynomial that represents the combined area of the garden and the walkway.
- Find the combined area when the width of the walkway is 4 feet.

8.4

Solve Polynomial Equations in
Factored Form

Factoring

- Tofactor a polynomial -
- To Factor a Polynomial:
- Step 1: Look for a
- A monomial that can be of in the polynomial
- Write the common monomial

EX: Factor out the greatest common monomial factor.

- 12x + 42y
- $4 x^{4}+24 x^{3}$
- $15 n^{3}-25 n$
- $8 a^{2} b-6 a b^{2}+4 a b$

Zero-Product Property

- If $\mathrm{ab}=0$, then
- This property is used to solve an equation when and the other side is a

$$
\text { - EX: }(\mathrm{x}-3)(2 \mathrm{x}+7)=0
$$

To solve an equation by factoring:

- 1) Put the equation in set equal to \qquad .
- EX:
- 2)
- 3) Set each factor and

EX: Solve the equation.

- $(2 y+5)(7 y-5)=0$
- $a^{2}+5 a=0$
- $-28 m^{2}=8 m$

Vertical Motion Model

- Models the of a
- An object thrown in the air with only the acting on it.
- http://phet.colorado.edu/sims/projectile-motion/projectile-motion en.html

Vertical Motion Model

- $h=\mathbf{- 1 6} \mathbf{t}^{\mathbf{2}}+\mathbf{v t}+\mathbf{s}$
- $\mathrm{h}=\ldots$ of the object (in feet)
$\square \mathrm{t}=\ldots$ the object is in the air (in seconds)
- $\mathrm{v}=$
- $S=$ \qquad of the object (in feet)

A dolphin jumped out of the water with an initial vertical velocity of 32 feet per second. After how many seconds did the dolphin enter the water?

- After 1 second, how high was the dolphin above the water?

8.5

Factor $x^{2}+b x+c$

Review:

- Multiplying results in a
- EX: $(3 x+2)(x-4)$
- Therefore, we will

To factor a polynomial:

- Step 1: Look for a \qquad
- Step 2: If you have a __, factor it into
- The $1^{\text {st }}$ terms in each binomial must to get the $1^{\text {st }}$ term in the trinomial.
- The $2^{\text {nd }}$ term in each binomial must \qquad to get the __ coefficient in the trinomial and must \qquad in the trinomial.
- NOTE: Pay attention to \qquad -

NOTEBOOK EXAMPLE \#1

EX: Factor the trinomial.

- $x^{2}+3 x+2$
- $t^{2}+9 t+14$
- $x^{2}-4 x+3$
- $t^{2}-8 t+12$
- $\mathrm{m}^{2}+\mathrm{m}-20$
- $w^{2}+6 w-16$
- $x^{2}-4 x y+4 y^{2}$
- $m^{2}-m n-42 n^{2}$

NOTEBOOK EXAMPLE \#2

EX: Solve the equation (by factoring).

- $x^{2}-2 x=24$
- $x^{2}-2 x-8=7$
- $s(s+1)=72$

EX: Find the dimensions of the

 rectangle.- 8.5 Ex \#43
- You are designing a flag for the SMCC football team with the dimensions shown. The flag requires 80 square feet of fabric. Find the width \boldsymbol{u} of the flag.

8.6

Factor $a x^{2}+b x+c$

Steps to Factoring:

- 1) Look for a \qquad .
- If the leading coefficient is \qquad , factor out a \qquad _-
- 2) If you have a , factor it into \qquad

Test to factor a trinomial when the leading coefficient is

- In your two binomials:
- The $1^{\text {st }}$ terms must \qquad to get the in the trinomial.
- The $2^{\text {nd }}$ terms must \qquad to get the
\square in the trinomial.
\qquad in the trinonnial.

NOTEBOOK EXAMPLE \#3

EX: Factor the trinomial.

- $3 x^{2}+8 x+4$
- $4 x^{2}-9 x+5$
- $2 x^{2}+13 x-7$
- $-2 x^{2}-5 x-3$
- $-5 m^{2}+6 m-1$
- $-4 n^{2}-16 n-15$

NOTEBOOK EXAMPLE \#4

EX: Solve the equation (by factoring).

- $8 x^{2}-2 x=3$
- $b(20 b-3)=2$
- $6 x^{2}-15 x=99$
- In a shot put event, an athlete throws the shot put from an initial height of 6 feet and with an initial vertical velocity of 29 feet per second. After how many seconds does the shot put hit the ground?

EX:

- The length of a rectangle is 7 inches more than 5 times its width. The area of the rectangle is 6 square inches. What is the width?
8.7

Factoring Special Products

Steps to Factoring:

-1)

- 2) Trinomial - into
- If the two binomials are the \qquad , its called a \qquad .
- 3) If you have a \qquad
- Factor it into \qquad with the \qquad but \qquad -
- $\mathbf{E X}: \mathbf{X}^{2}-9$

NOTEBOOK EXAMPLE \#5

EX: Factor the polynomial.

- $y^{2}-16$
- $121 \mathrm{x}^{2}-144$
- $x^{2}-81 y^{2}$
- $8-18 x^{2}$
- $-4 x^{2}+64$
- $x^{2}-12 x+36$
- $4 x^{2}+4 x y+y^{2}$
- $-3 y^{2}+36 y-108$

NOTEBOOK EXAMPLE \#6

EX: Solve the equation.

- $4 \mathrm{x}^{2}-36=0$
- $-8 k^{2}=-98$
- $\mathrm{y}^{2}-\frac{5}{3} \mathrm{y}=-\frac{25}{36}$

EX:

- A window washer drops a wet sponge from a height of 64 feet. After how many seconds does the sponge land on the ground?

8.8

Factor Polynomials Completely

Steps to Factoring:

-1)

- 2) Trinomial - into
- 3) Difference of square -
\qquad , different \qquad .
- 4) If you have a \qquad :
- Group the polynomial in \qquad -
- Factor out a from each.
- Factor out a from each pair.

NOTEBOOK EXAMPLE \#7

EX: Factor.

- $x(x-2)+(x-2)$
- $6 z(z-4)-7(z-4)$
- $12(\mathrm{z}-1)-5 \mathrm{z}^{2}(1-\mathrm{z})$
- $\mathrm{a}^{3}+3 \mathrm{a}^{2}+\mathrm{a}+3$
- $\mathrm{a}^{3}+13 \mathrm{a}^{2}-5 \mathrm{a}-65$

NOTEBOOK EXAMPLE \#8

EX: Factor completely.

- $3 x^{3}-12 x$
- $2 \mathrm{y}^{3}-12 \mathrm{y}^{2}+18 \mathrm{y}$
- $7 a^{3} b^{3}-63 a b^{3}$

NOTEBOOK EXAMPLE \#9

EX: Solve the equation.

- $w^{3}-8 w^{2}+16 w=0$
- $\mathrm{X}^{4}-25 \mathrm{X}^{2}=0$
- $4 y^{3}-7 y^{2}=16 y-28$
- A terrarium has a volume of 4608 cubic inches. Its length is more than 10 inches. Its dimensions are shown. Find the length, width, and height of the terrarium.

