Chapter 6 Similarity

6.1 Use Similar Polygons

Similar Polygons

> Polygons are <u>similar</u> if:

- ► Corresponding <u>angles</u> are <u>congruent (=)</u>
- AND
- Corresponding <u>sides</u> are <u>proportional</u>

Similar Symbol: _____

EX: The two triangles are similar.

Write the ratios of the corresponding sides in a statement of proportionality.
* Set up equal ratios of corresponding sides

$$\frac{AC}{DF} = \frac{CB}{FE} = \frac{BA}{ED}$$

EX: EDCBA ~ TSRQP

 List all pairs of congruent angles.

 $2S \cong 2D$ $2R \cong 4C$ $2Q \cong 4B$ $2P \cong 4A$ $2T \cong 4E$

 Write the ratios of the corresponding sides in a statement of proportionality.

$$\frac{SR}{DC} = \frac{RQ}{CB} = \frac{QP}{BA} = \frac{PT}{EA} = \frac{TS}{ED}$$

Scale Factor

EX: Find the scale factor for each.

ABCD to QRST

& Pick any 2 corresponding sides.

Scale Factor =
$$\frac{10}{5} = \frac{2}{1}$$

In the diagram, *ABCD* ~ *QRST*.

Scale Factor =
$$\frac{5}{10} = \frac{1}{2}$$

EX: SKip

Determine whether the polygons are similar. If they are, write a similarity statement and find the scale factor of *ZYXW* to *FGHJ*.

Finding Missing Side Lengths in Similar Polygons

Since similar polygons have sides that are

EX: Solve for c.

C = 72

EX: Solve for x, y, and z.

Þ

EX: Solve for x and y.

Perimeters

EXAMPLE 4 Find perimeters of similar figures

Swimming

A town is building a new swimming pool. An Olympic pool is rectangular with length 50 meters and width 25 meters. The new pool will be <u>similar</u> in shape, but only 40 meters long.

a. Find the scale factor of the new pool to an Olympic pool.

EXAMPLE 4 Find perimeters of similar figures

b. Find the perimeter of an Olympic pool and the new pool.

* Ratio of Perimeters = Scale Factor * Olympic Perimeter = 25+50+25+50 = 150 New Pool Perimeter = X

$$\frac{\text{New}}{\text{Olympic}} : \frac{X}{150} = \frac{4}{5}$$
$$\frac{5x}{5} = \frac{600}{5}$$
$$x = 120 \text{ m}$$

EXAMPLE 5 Use a scale factor

In the diagram, $\Delta TPR \sim \Delta XPZ$. Find the length of the altitude \overline{PS} .

_ _ _ _ _ _