Chapter 6 Similarity

6.1

Use Similar Polygons

Similar Polygons
Polygons are similar if:

- Corresponding \qquad angles are \qquad congruent (\cong
- AND
- Corresponding \qquad sides are \qquad proportional
- Similar Symbol: \qquad

* same shape but not necessarily the same size

$$
D C B A \sim S R Q P
$$

(order matters \rightarrow match up corresponding angles)

EX: The two triangles are similar.

- List all pairs of congruent angles.

$$
\begin{aligned}
& \angle A \cong \angle D \\
& \angle C \cong \angle F \\
& \angle B \cong \angle E
\end{aligned}
$$

- Write the ratios of the corresponding sides in a statement of

$$
\frac{A C}{D F}=\frac{C B}{F E}=\frac{B A}{E D}
$$

proportionality.

$$
\begin{aligned}
& \text { * Set up equal ratios } \\
& \text { of corresponding sides }
\end{aligned}
$$

EX: EDCBA ~ TSRQP

- List all pairs of congruent angles.

$$
\begin{aligned}
& \angle S \cong \angle D \\
& \angle R \cong<C \\
& \angle Q \cong<B \\
& \angle P \cong \angle A \\
& \angle T \cong \angle E
\end{aligned}
$$

- Write the ratios of the corresponding sides in a statement of
 proportionality.

$$
\frac{S R}{D C}=\frac{R Q}{C B}=\frac{Q P}{B A}=\frac{P T}{E A}=\frac{T S}{E D}
$$

Scale Factor
If two polygons are \qquad , the
\qquad of the \qquad lengths of two corresponding sides is called the scale factor

Ratio of any 2 corresponding sides = scale factor
Ex: Scale factor $=\frac{2}{4}=\frac{1}{2}$
(Notice - all sides would reduce to $\frac{1}{2}$)

EX: Find the scale factor for each.

- ABCD to QRST
* Pick any 2 corresponding sides.

$$
\text { Scale Factor }=\frac{10}{5}=\frac{2}{1}
$$

In the diagram, $A B C D \sim Q R S T$.

QRST to ABCD

$$
\text { Scale Factor }=\frac{5}{10}=\frac{1}{2}
$$

EX: Skip

Determine whether the polygons are similar.If they are, write a similarity statement and find the scale factor of $Z Y X W$ to $F G H J$.

Finding Missing Side Lengths in Similar Polygons

- Since similar polygons have sides that are
_proportional ,you can use a proportion to solve for a
\qquad
- To Solve a proportion .
\qquad cross multiplication

$$
\begin{aligned}
& \frac{x}{14}=\frac{3}{21} \\
& \frac{x}{14} \geq \frac{3}{21} \\
& \frac{21 x}{21}=\frac{42}{21} \\
& x=2
\end{aligned}
$$

EX: Solve for c.

EX: Solve for x, y, and z .

Angle: $z=115^{\circ}$
Sides: $\frac{x}{25}=\frac{18}{30} \quad \frac{y}{15}=\frac{30}{18}$

$$
\begin{array}{ll}
\frac{30 x}{30}=\frac{450}{30} & \frac{18 y}{18}=\frac{450}{18} \\
y=25
\end{array}
$$

EX: Solve for x and y .

$$
\begin{aligned}
& \frac{x}{5}=\frac{7}{4} \\
& \frac{4 x}{4}=\frac{35}{4} \\
& x=8.75
\end{aligned}
$$

$$
\begin{aligned}
\frac{(y+2)}{6} & =\frac{7}{4} \\
4(y+2) & =42 \\
4 y+8 & =42 \\
-8 & -8 \\
\frac{4 y}{4} & =\frac{34}{4}
\end{aligned}
$$

Put any sums or
differences in parantheses so you remember to distribute!

Perimeters

All sides added up.

- If two polygons are _ similar , the
\qquad of their perimeters is equal to the ratio of sides
- Both are also equal
to the
scale factor of the polygons.

$$
\left.\begin{array}{l}
P_{1}=4+3+2=9 \\
P_{2}=8+6+4=18 \\
\text { Perimeter Ratio }=\frac{9}{18}=\frac{1}{2} \\
\text { Side Ratio }=\frac{4}{8}=\frac{1}{2} \\
\text { Scale Factor }=\frac{1}{2}
\end{array}\right\} \text { All equal }
$$

EXAMPLE 4 Find perimeters of similar figures

Swimming

A town is building a new swimming pool. An Olympic pool is rectangular with length 50 meters and width 25
 meters. The new pool will be similar in shape, but only 40 meters long.
a. Find the scale factor of the new pool to an Olympic pool.

$$
S F=\frac{\text { New }}{\text { Olym. }}=\frac{40}{50}=\frac{4}{5}
$$

EXAMPLE 4 Find perimeters of similar figures

b. Find the perimeter of an Olympic pool and the new pool.

$$
\begin{aligned}
& \text { * Ratio of Perimeters }=\text { Scale Factor } \\
& \text { * Olympic Perimeter }=25+50+25+50=150 \\
& \text { New Pool Perimeter }=x \\
& * \text { New } \\
& \text { Olympic } \frac{x}{150}=\frac{4}{5} \\
& \frac{5 x}{5}=\frac{600}{5} \\
& x=120 \mathrm{~m}
\end{aligned}
$$

Corresponding Lengths in Similar Polygons

- If two polygons are \qquad , then the
\qquad of any two \qquad Corresponding lengths in the polygons is \qquad to the

scale factor of the polygons.

, Examples:
Altitudes

Median:

Perpendicular Bisector

EXAMPLE 5 Use a scale factor

In the diagram, $\triangle T P R \sim \triangle X P Z$. Find the length of the altitude $\overline{P S}$.

$$
\begin{aligned}
\frac{x}{20} & =\frac{12}{16} \\
\frac{16 x}{16} & =\frac{240}{16} \\
x & =15
\end{aligned}
$$

EX:

GUIDED PRACTICE for Example 5

7. In the diagram, $\triangle J K L \sim \Delta E F G$. Find the length of the median $\overline{K M}$.

$$
\begin{aligned}
& \frac{x}{35}=\frac{96}{80} \\
& \frac{80 x}{80}=\frac{3360}{80} \\
& x=42
\end{aligned}
$$

