CHAPTER 1 ESSENTIALS OF GEOMETRY

Identify Points, Lines, and Planes

Represented ______

Represented by a	
Extends	
Through	there is

Represented by	
Extends	
Through any	not on the
th	ere is

Collinear _____

Coplanar_____

EX:

Give two other names for line UB

Give two other names for plane S

Name three points that are collinear

Name four points that are coplanar

 Name a point that is not coplanar with points U, H, and X

□ A	that consists of
	and
in between those	

Ray	
□ A	that consists of
	and
to	

Opposite Rays have ______ but point in ______

Give another name for segment QN

Name all rays with endpoint L. Which of these are opposite rays?

Are ray LN and ray NL the same ray? Explain.

Are ray PL and ray PM the same ray? Explain.

<u>Real Life Examples</u>: Points, Lines, Planes, Segments, Rays

Intersection that figures have □ The С Q A Р Е B В ۴A D

Name the intersection of line AB and line EF

Name the intersection of plane L and plane K

Name the intersection of line MN and plane K

EX: Sketch each situation.

□ A plane and a line that is in the plane.

A plane and a line that intersects the plane at a point.

A plane and two intersecting lines that intersect the plane at separate points.

Two planes that intersect in a line.

Use Segments and Congruence

Postulate or Axiom

A rule that is ______

POSTULATE #2: Segment Addition Postulate

If points A, B, and C are _____, and point B is ______ A and C, then

EX: Use the diagram to answer the following questions.

Use the SAP to find LK.

Use the SAP to write and solve an equation to find PH.

With the given information, can you use the SAP to find the distance between points L and H? Explain.

Congruent Segments

Line segments that have the _____

Symbol: _____

EX:

Graph the points X(-2, -5), Y(-2, 3), W(-4, 3), and Z(4, 3) in a coordinate plane. Are segment XY and segment WZ congruent?

Use Midpoint and Distance Formulas

Segment Bisector

Divides the segment into _____

□ Line I bisects the segment. Find the indicated length. □ Find AO if OB = $1\frac{7}{8}$

\square Find AB is AO = 23 mm

M is the midpoint of the segment. Find the indicated length.

 \Box Find AB.

□ Find AM.

Midpoint Formula

Find the coordinates of the midpoint of the segment with the given endpoints.

 \Box R(1, -3) and S(4, 2)

- Use the given endpoint R and midpoint M of segment RS to find the coordinates of the other endpoint S.
- □ M(5, 8) and R(2, -3)

Distance Formula

What is the approximate length of segment AB, with endpoints A(-3, 2) and B(1, -4)?

Find the length of the segment. Round to the nearest tenth of a unit, if necessary.

Measure and Classify Angles

Angle	2
-------	---

T	•.1 .1
□ Two	with the
Rays:	
Endpoint:	

EX: Name all the angles.

Measuring Angles

Use a _____

Measured in ______

Symbol: _____

Classifying Angles

□ Acute:

□ Right:

Obtuse:

□ Straight:

POSTULATE #4: Angle Addition Postulate

□ Symbols:

EX: Find the indicated angle measure.

□ Given that angle ABC is a straight angle, find the

Given that the measure of angle ABD is 100 degrees find ______

- □ Have the _____
- Symbol: _____

EX: Identify the congruent angles.

Angle Bisector

EX: Find the indicated angle measure.

Ray AB bisects angle DAC. Find _____

EX:

Angle MNP is a straight angle and ray NQ bisects it. Draw angle MNP and ray NQ. Use arcs to mark the congruent angles in your diagram, and give the angel measures of these congruent angles.

Describe Angle Pair Relationships

Complementary Angles

Supplementary Angles

Complementary and Supplementary Angles can be:

- Adjacent: ______ that _____
 a common ______
 Nonadjacent: ______
- □ EX:

Name a pair of complementary angles, supplementary angles, and a pair of adjacent angles.

EXPLAIN!

Angle Pairs

Angle Pairs Cont.

EX: Name all Linear Pairs and Vertical Angles.

Two angles form a linear pair. The measure of one angle is 5 times the measure of the other. Find the measure of each angle.

Classify Polygons

□ A		
with the following properties:		
Formed by	or more	
called		
Each side	exactly _	
sides, one at each		_, so that no
two sides with a common endp	oint are	
Vertex:		

Types of Polygons

□ Convex:	that contains a	
	_ of the polygon contains a	
in the	of the polygon.	
🗆 Concave: a _	that contains the	
	_ of the polygon does contain a	
	in the	_ of
.1 1		

the polygon.

Tell whether the figure is a polygon and whether it is convex or concave.

Classifying Polygons

Polygons are named by the _____

_ of its

Number of Sides	Name

Number of Sides	Name

Types of Polygons

Classify the polygon by the number of sides. Tell whether it is equilateral, equiangular, or regular. EXPLAIN.

A rack for pool balls is shaped like an equilateral triangle. Find the length of a side if the lengths (in inches) of two sides are represented by the expressions (4x + 2) and (6x - 4).

