CHAPTER 1 ESSENTIALS OF GEOMETRY

1.1

Identify Points, Lines, and Planes

Point
\square
\square Represented

Line

\square
\square Represented by a
\square Extends
\square Through
there is

Plane
\square Represented by
\square Extends
\square Through any not on the
there is

Types of Points

\square Collinear
\square Coplanar

\square Give two other names for line UB
\square Give two other names for plane S

\square Name three points that are collinear
\square Name four points that are coplanar
\square Name a point that is not coplanar with points U, H, and X

Segment

$\square \mathrm{A}$
that consists of and
in between those

Ray
$\square \mathrm{A}$
that consists of
and
to
\square Opposite Rays have but point in
\square Give another name for segment QN
\square Name all rays with endpoint L. Which of these are opposite rays?
\square Are ray LN and ray NL the same ray? Explain.

\square Are ray PL and ray PM the same ray? Explain.

Real Life Examples: Points, Lines,

 Planes, Segments, Rays

Intersection

\square The
that figures have

\square Name the intersection of line $A B$ and line EF
\square Name the intersection of plane L and plane K
\square Name the intersection of line MN and plane K

EX: Sketch each situation.

\square A plane and a line that is in the plane.
\square A plane and a line that intersects the plane at a point.

Cont.

\square A plane and two intersecting lines that intersect the plane at separate points.
\square Two planes that intersect in a line.
1.2

Use Segments and Congruence

Postulate or Axiom

\square A rule that is
\square POSTULATE \#2: Segment Addition Postulate
\square If points A, B, and C are point B is \qquad A and C, then

EX: Use the diagram to answer the following questions.

\square Use the SAP to find LK.
\square Use the SAP to write and solve an equation to find PH.
\square With the given information, can you use the SAP to find the distance between points L and H? Explain.

Congruent Segments

\square Line segments that have the
\square Symbol:

\square Graph the points $X(-2,-5), Y(-2,3), W(-4,3)$, and $Z(4,3)$ in a coordinate plane. Are segment $X Y$ and segment WZ congruent?
1.3

Use Midpoint and Distance Formulas

Midpoint

\square The point that
a
into \qquad

Segment Bisector

$\square \mathrm{A}$
\qquad
is \qquad
\square Divides the segment into \qquad

\square Line I bisects the segment. Find the indicated length.

- Find $A O$ if $O B=1 \frac{7}{8}$
\square Find $A B$ is $A O=23 \mathrm{~mm}$

$\square M$ is the midpoint of the segment. Find the indicated length.
\square Find $A B$.

EX:
\square Find $A M$.

Midpoint Formula

\square The of the of a segment are the of the and of the of the

\square Find the coordinates of the midpoint of the segment with the given endpoints.
$\square R(1,-3)$ and $S(4,2)$
\square Use the given endpoint R and midpoint M of segment $R S$ to find the coordinates of the other endpoint S.
$\square M(5,8)$ and $R(2,-3)$

Distance Formula

\square If
and
are
points in a coordinate plane, then the between

\square What is the approximate length of segment $A B$, with endpoints $A(-3,2)$ and $B(1,-4)$?
\square Find the length of the segment. Round to the nearest tenth of a unit, if necessary.

1.4

Measure and Classify Angles

Angle
\square Two
with the
\square Rays:
\square Endpoint:

EX: Name all the angles.

Measuring Angles

\square Use a
\square Measured in
\square Symbol:

Classifying Angles

\square Acute:
\square Right:
\square Obtuse:
\square Straight:
\square POSTULATE \#4: Angle Addition Postulate
\square If is in the
then the
is equal to the \qquad
\square Symbols:

EX: Find the indicated angle measure.

\square Given that angle $A B C$ is a straight angle, find the

\square Given that the measure of angle $A B D$ is 100 degrees find

Congruent Angles

\square Have the
\square Symbol:

EX: Identify the congruent angles.

Angle Bisector

$\square \mathrm{A}$ into
that an angle that are

EX: Find the indicated angle measure.

\square Ray $A B$ bisects angle DAC. Find

\square Angle MNP is a straight angle and ray NQ bisects it. Draw angle MNP and ray NQ. Use arcs to mark the congruent angles in your diagram, and give the angel measures of these congruent angles.
1.5

Describe Angle Pair Relationships

Complementary Angles

$$
\square \ldots \text { of their ___ is }
$$

Supplementary Angles

\qquad

Complementary and Supplementary

 Angles can be:\square Adjacent:
that
a common \qquad
\square Nonadjacent:
$\square E X:$
\square Name a pair of complementary angles, supplementary angles, and a pair of adjacent angles.

EX:
\square Are adjacent angles? Are adjacent angles?
EXPLAIN!

\square Given that of
\qquad
\square Given that of ___ and is a \qquad , find the

EX:

\square Find the

 and

EX:

\square Find the
$\frac{(7 q-46)^{\circ} \int_{(3 q+6)^{\circ} \quad C}^{D}}{B}$
and \qquad --

Angle Pairs

\square Linear Pair: whose are
\qquad

- ___ angles

Angle Pairs Cont.

\square Vertical Angles: Two whose
\qquad

EX: Name all Linear Pairs and Vertical Angles.

\square Two angles form a linear pair. The measure of one angle is 5 times the measure of the other. Find the measure of each angle.
1.6

Classify Polygons

Polygons

\square A
with the following properties:

- Formed by \qquad or more \qquad called
- Each side \qquad exactly sides, one at each \qquad , so that no two sides with a common endpoint are
- Vertex:

Types of Polygons

\square Convex: that contains a of the polygon contains a \qquad
in the of the polygon.
\square Concave: a that contains the of the polygon does contain a in the \qquad of the polygon.

EX:
\square Tell whether the figure is a polygon and whether it is convex or concave.

Classifying Polygons

\square Polygons are named by the ___ of its
\qquad

Number of Sides	Name

Number of Sides	Name

Types of Polygons

\square Equilateral: All \qquad are \qquad
\square Equiangular: All \qquad are \qquad
\square Regular: A
polygon that is

\square Classify the polygon by the number of sides. Tell whether it is equilateral, equiangular, or regular. EXPLAIN.

\square A rack for pool balls is shaped like an equilateral triangle. Find the length of a side if the lengths (in inches) of two sides are represented by the expressions $(4 x+2)$ and $(6 x-4)$.

