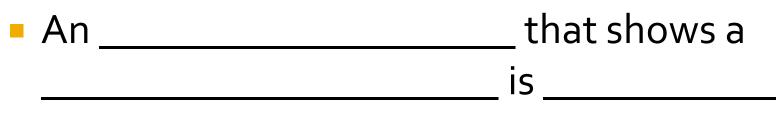

Chapter 2 Reasoning and Proof

2.1 Use inductive reasoning

Inductive Reasoning

- Describe the pattern and give the next 3 numbers:
- **1**, 2, 4, 8
- **20, 18, 16, 1**4
- 0, 1, 3, 6,



 Numbers such as 3, 5, 7, and 9 are odd numbers. Make and test a conjecture about the product of any two odd numbers.

 Numbers such as 3, 4, and 5 are consecutive integers. Make and test a conjecture about the sum of any three consecutive integers.

Counterexample

- EX:
 - Conjecture: All angles are acute.
 - Counterexample:

- Show the conjecture is false by providing a counterexample.
 - Supplementary angles are always adjacent.
 - Counterexample:

- Show the conjecture is false by providing a counterexample.
 - The sum of two numbers is always greater than the larger number.
 - Counterexample:

2.2 Analyze Conditional Statements

Conditional Statement

- A statement that has ______,
 a ______ and a ______
 Hypothesis: _______
 Conclusion: _______
- EX: If it is raining, then there are clouds in the sky.

- Rewrite the conditional statement in if-then form.
- All 90° angles are right angles.

Tourists at the Alamo are in Texas.

Negation

- EX:
- Statement: The ball is green.
- Negation: The ball is _____ green.
- Statement: The cat is not black.
- Negation: The cat _____ black.

When the _____ and ____ of a statement are

• EX:

- Statement: If a dog is a Great Dane, then it is large.
- Converse: ______

When the _____ and ____ are both

• EX:

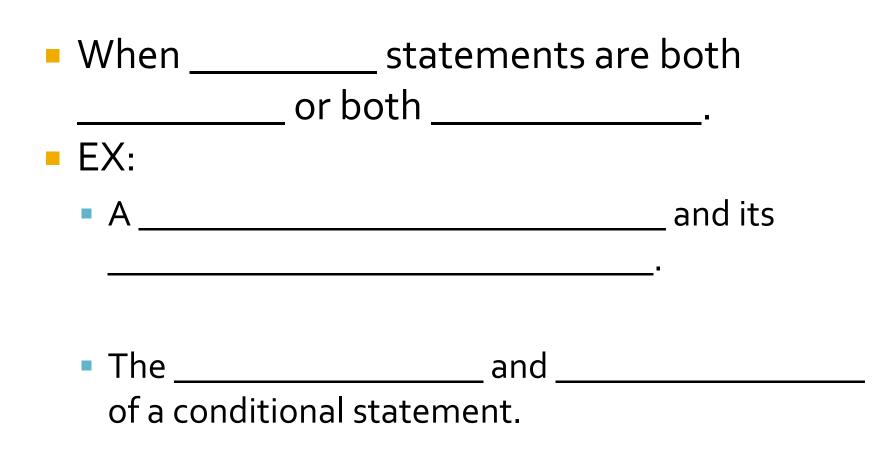
- Statement: If a dog is a Great Dane, then it is large.
- Inverse: ______

Contrapositive

The ______ of a statement with both the ______ and ______ negated.

• EX:

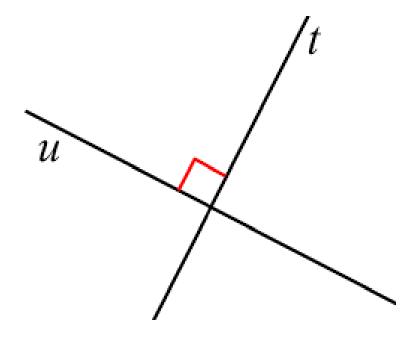
- Statement: If a dog is a Great Dane, then it is large.
- Contrapositive: _____


- Write the if-then form, the converse, the inverse, and the contrapositive of the conditional statement. Tell whether each statement is true or false.
- Statement: Soccer players are athletes.
 - If-then form: _____

Inverse: ______

Equivalent Statements

Definitions


When a definition is written in _________, then its _________

is

also true.

- EX: Definition of Perpendicular Lines
 - If-then form: ______
 - Converse:

Symbol for perpendicular lines:

Biconditional Statement

- A statement that contains the phrase
- EX:
 - Definition: If the sum of two angles is 180°, then the angles are _____.
 - Biconditional: _____

- Rewrite the definition as a biconditional statement.
- Definition: An angle with a measure of 90° is a right angle.
- Biconditional:

2.3 Apply Deductive Reasoning

Inductive Reasoning: Uses ______ and ______ to make a

Deductive Reasoning

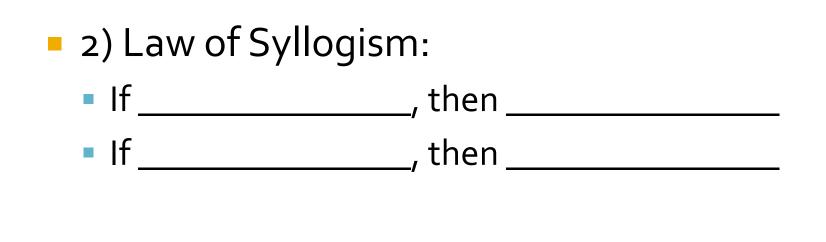
Uses ______, and the ______, and the ______, to form a logical

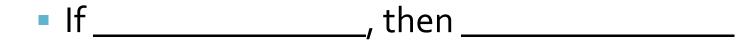
Deductive Reasoning

Examples:

- All students eat pizza. <u>Claire is a student at ASU.</u> Therefore, Claire eats pizza.
- All athletes work out in the gym. <u>Barry Bonds is an athlete</u>. Therefore, Barry Bonds works out in the gym.

Laws of Logic




Law of Detachment

Example 2:

Given: If I find \$20 in the street, then I'll take you to the movies. On October 10 I found \$20 in the street. Conclusion: I will take you to the movies.

Laws of Logic cont.

Law of Syllogism

- If p → q and q → r is true, then p → r is true.
- If you wear yoga pants and violate the dress code, then you will need to go to the office.
- If you go to the office then you will need to change your clothes.
- If you wear yoga pants and violate the dress code you will need to change your clothes.

EX: Use the Law of Detachment to make a valid conclusion.

 Mary goes to the movies every Friday and Saturday night. Today is Friday.

 If two angles are right angles, then they are congruent. Angle C and Angle D are right angles.

EX: Use the Law of Syllogism to write a new conditional statement.

 If Joe takes Geometry this year, then he will take Algebra II next year. If Joe takes Algebra II next year, then he will graduate.

EX: Use the Law of Syllogism to write a new conditional statement.

If water is at room temperature, then it is a liquid. If water is a liquid, then it is not frozen.

EX: State the Law of Logic that is illustrated.

- If you get an A on your math test, then you can go to the football game. If you go to the football game, then you will see your friends.
 If you get an A on your math test, then you will see your friends.
- If Colin is enrolled at SMCC, then Colin has an ID number. Colin is enrolled at SMCC. Therefore Colin has an ID number.

EX: Decide whether inductive or deductive reasoning is being used.

 Each time Katie kicks a ball up in the air, it returns to the ground. So the next time Katie kicks a ball up in the air, it will return to the ground.

 All reptiles are cold-blooded. Parrots are not cold-blooded. Anna's pet parrot in not a reptile.

2.4 Use Postulates and Diagrams

Postulates

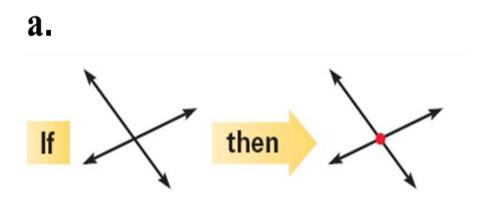
- Accepted ______ in geometry.
 Postulate 1: Ruler Postulate
- Postulate 2: Segment Addition Postulate
- Postulate 3: Protractor Postulate
- Postulate 4: Angle Addition Postulate

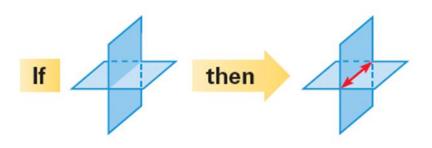
Postulates cont.

- Postulate 6: A ______ contains at least _____.

Postulate 7: Two ______ intersect at

Postulates cont.


Postulate 8: Through any ______ points there is


Postulate 9: A _____ contains at least _____.

Postulate cont.

Postulate 10: If ______ lie in a plane, then the ______ containing them is _____.

EX: State the postulate illustrated by the diagram.



EX: Use the diagram to write examples of the following postulates.

Postulate 5:

Postulate 6:

2.5 Using Properties

Reflexive Property: Anything ______ itself.

Symmetric Property: The _______ of an ______ can be ______

Properties cont.

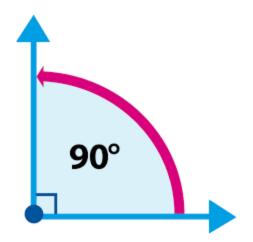
Transitive Property: If _____ and _____, then _____.

Substitution: If ______, then _____, can be ______ in for each other.

EX: Name the property that illustrates the statement.

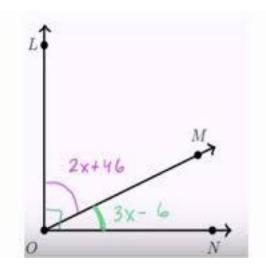
If m < 6 = m < 7, then m < 7 = m < 6.</p>

If JK = KL and KL = 12, then JK = 12

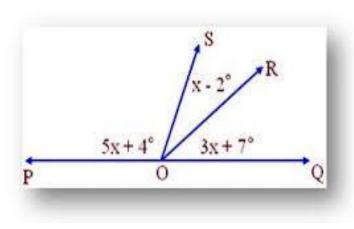

■ *m* < *W* = *m* < *W*

If AB = 10, then AB + CD = _

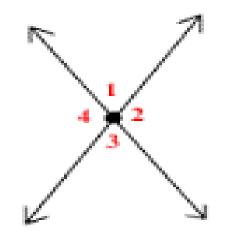
2.7 Angle Pair Relationships


Right Angles

- Have a measure of _
- All right angles are _

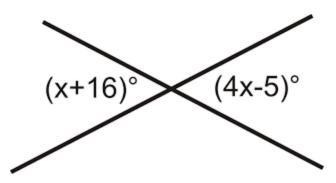

Complementary Angles

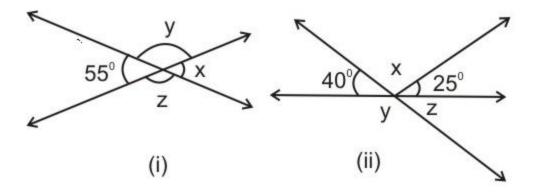
Add to _____EX: Solve for x.


Supplementary Angles

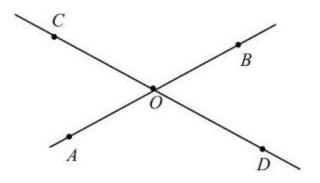
Add to _____EX: Solve for x.

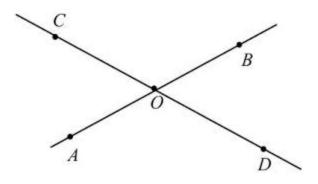
Linear Pair


Angles that are ____


Vertical Angles

angle that are ____


EX: Solve for x.


Find x, y, and z in each diagram.

EX: Find the value of x and y.

EX: Find the value of each angle.

