Chapter 4 Congruent Triangles

4.1 Apply Triangle Sum Properties

Classify Triangles by SIDE:

- * Scalene:
- * Isosceles:
- * Equilateral:

Classify Triangles by ANGLE:

- * Acute:
- * Right:
- * Obtuse:_
- * Equilateral:

EX: Classify the triangles by sides and angles.

Interior and Exterior Angles

EX: Find x. Then classify then classify the triangle by its angles.

EX: Solve for x. Then tell the value of the exterior angle.

EX: Find the measures of the acute angles in the right triangle shown.

4. Find *x* and *y*.

4.2 Apply Congruence and Triangles

Congruent Figures

and

* Have exactly the

Have congruent _____
and congruent _____

EX: Write a congruence statement for the triangles. Identify all pairs of congruent corresponding parts.

In the diagram at the right, $ABGH \cong CDEF$.

* Find the value of x and m<H.

EX: Find the value of <B and <Z.

EX: What is the m<DCN?

4.3 Relate Transformations and Congruence

Rigid Motion

the

* A transformation that keeps , and

same.

* Translations:

Rigid Motion Continued:

EX: Describe the transformation(s) you can use to move the blue figure onto the red figure.

4.4 Prove Triangles Congruent by SSS

EX: Decide whether the congruence statement is true. Explain.

2. $\triangle ACB \cong \triangle CAD$

has vertices J(-3, -2), K(0, -2), and L(-3, -8). *RST* has vertices R(10, 0), S(10, -3), and T(4, 0). Graph the triangles in the same coordinate plane and show that they are congruent.

4.5 Prove Triangles Congruent by SAS and HL

Side-Angle-Side (SAS) Congruence Postulate

State a third congruence that would allow you to prove $\triangle RST \cong \triangle XYZ$ by the SAS Congruence postulate.

State a third congruence that would allow you to prove $\triangle RST \cong \triangle XYZ$ by the SAS Congruence postulate.

$$4. \ \ \angle T \cong \angle Z, \ \overline{RT} \cong \overline{XZ}$$

EX: Decide whether enough information is given to prove that the triangles are congruent by SAS.

0 mathwarehouse.com

In the diagram, QS and RP pass through the center M of the circle. What can you conclude about MRS and MPQ?

Hypotenuse – the side _____
of the

Hypotenuse-Leg Theorem

Is there enough given information to prove the triangles congruent? If there is, state the postulate or theorem.

2. \triangle *FGH*, \triangle *HJK*

EX: Decide whether enough information is given to prove that the triangles are congruent. Is so, state the postulate or theorem used.

Prove Triangles Congruent by ASA and AAS

Angle-Side-Angle (ASA) Congruence Postulate

* If ______ and the ______ of one triangle are ______ of one triangle are ______ and the ______ and the ______ of another triangle,

then the two triangles are

Angle-Angle-Side (AAS) Congruence Postulate

EX: Is it possible to prove that the triangles are congruent? If so, state the postulate or theorem used.

Tell whether the pair of triangles is congruent or not and why.

b.

EX: Tell whether you can use the given information to determine whether

Triangle Congruence Summary

* All Triangles

* Right Triangles

4.8 Use Isosceles and Equilateral Triangles

Isosceles Triangles

- * Isosceles Triangles have
- * Parts of Isosceles Triangles:

Converse to Base Angle Theorem

* If _____ in a triangle are congruent, then the ______ are

* If the measure of vertex angle of an isosceles triangle is 112°, what are the measures of the base angles?

2.

EX: Find the value of x and y.

Equilateral and Equiangular Triangles

* Equilateral Triangles have	
* Equiangular Triangles have	
* All	are also
* All	are also

* Meaning:

3. Find ST in the triangle at the right.

4. Find the perimeter of triangle.

