Sampling Error (Margin of Error)

* The difference between the point estimate (\bar{x}) and the actual value of the parameter.
* Margin of Error E - the greatest possible error (__or distance) between the
point estimate (\bar{x}) and the value of the parameter. (μ)
* The maximum area: $\bar{x}-\mu$

To find the Margin of Error:

* Use the formula:

$$
E=Z_{c}\left(\frac{\sigma}{\sqrt{n}}\right) \quad \begin{aligned}
& E=\text { margin of error } \\
& Z_{c}=\text { critical values } \\
& a=\text { pop. Standard } \\
& n=\text { deviation } \\
& n=\text { sample size }
\end{aligned}
$$

* As long as these conditions are met:
* The sample is random
* The population is normally distributed OR \qquad

\square

* You take a random sample of 40 employees from several grocery stores to find the mean number of hours worked. Use a 95% confidence level to find the margin of error for the mean number of hours worked by grocery store employees. Assume the population standard deviation is 7.9 hours.

$$
\begin{aligned}
& z_{c}=1.96 \\
& \text { (use Calc) }
\end{aligned}
$$

$$
\begin{aligned}
& E=1.96\left(\frac{7.9}{\sqrt{40}}\right) \\
& E=2.4 \text { hours } \\
& * \text { Pop. mean will differ from } \\
& \text { sample mean by at most } \\
& 2.4 \text { hours } \rightarrow \text { We can say } \\
& \text { this with } 95 \% \text { confidence. }
\end{aligned}
$$

Confidence Intervals for a Population Mean

* Using the point estimate (\bar{x}) and the margin of error (E) , you can construct an interval estimate of a population parameter (such as the mean μ
* This interval is called a Confidence interval for a population mean M :

$$
\bar{x}-E<M<\bar{x}+E
$$

Confidence Interval: interval
in which pop. mean should
fall

Constructing a Confidence Interval for a Population Mean (with known standard deviation):

* 1) Make sure that a (pop. SD) is known, the sample is \qquad , and that either the population is normally distributed or that $n \geq 30$
* 2) Find the sample statistics n and \bar{x}

$$
\begin{gathered}
\text { Sample mean: } \bar{x}=\frac{\text { All } x \text { 's added up }}{n} \\
\text { (if not given } \bar{x} \text {) }
\end{gathered}
$$

* 3)Find the critical value __ $z_{c} \quad$ that corresponds to the given level of confidence (c written as a \%). * Calc \rightarrow invsnorm
* 4) Find the margin of error \qquad :

$$
E=z_{c}\left(\frac{\sigma}{\sqrt{n}}\right)
$$

* 5) Find the left and right endpoints and form the confidence interval

EX:

* A college admissions director wishes to estimate the mean age of all students currently enrolled. In a random sample of 20 students, the mean age is found to be 22.9 years. From past studies, the standard deviation is known to be 1.5 years, and the population is normally distributed. Construct a 90\% confidence interval of the population mean age.

Interpreting the Confidence Interval from Previous Example

* "With 90\% confidence, the mean is in the interval ($22.3,23.5$)
* This means: When a large number of samples is collected and a confidence
\qquad is created for each sample, approximately 90% of these intervals will contain _u (pop, mean).

The horizontal segments represent 90% confidence intervals for different samples of the same size.

The mean of the population

- does not lie in one of the intervals.
$9 / 10$ of the intervals
will contain $M(90 \%)$
9/10 of the intervals
will contain $\mu(90 \%)$
The mean of the population lies in nine of the intervals.

