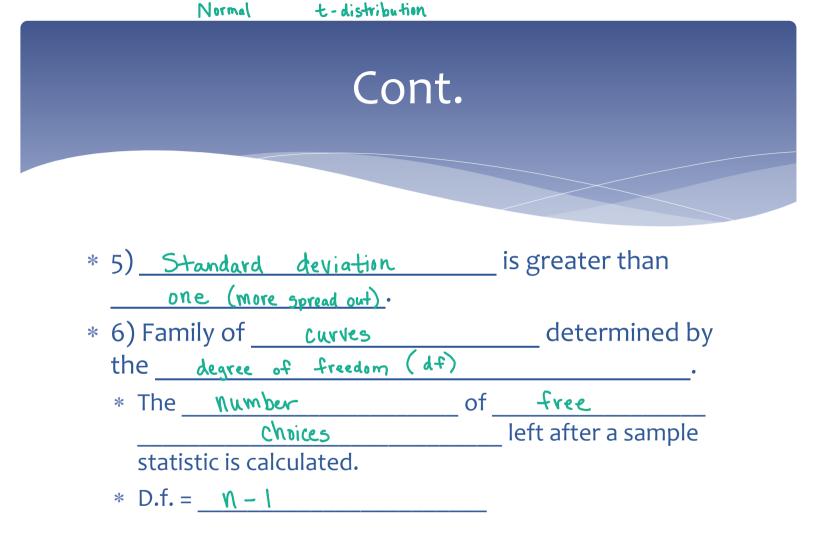

6.2Confidence Intervals for the Mean (with unknown σ)

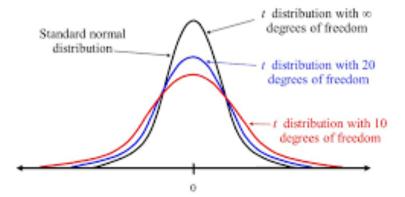

* used when pop. standard deviation is not known

The t-Distribution

* Used to construct a confidence interval (a range of values) for a population <u>mean</u> when the population standard is not known. deviation (a) * Critical values are t_c Definition A critical value is the number on the borderline separating sample statistics that are likely to occur from * Find to using those that are unlikely to occur. your calculator: Critical Critical Valuet - Distr - InvT Nonrejection Rejection Area: 9t : The critical value is the thin line between rejection and acceptance.

Properties of the t-Distribution

* Degrees of freedom illustration:


- * 25 Students in a class
- * 25 Chairs in the classroom
- * Each of the first <u>24 Students</u> to enter the classroom has a <u>Choice</u> as to which chair they will sit in. There is <u>No freedom</u> or <u>choice</u>, however, for the <u>25</u>th student who enters the room. * 24 degrees of freedom <u>- 24 choices</u> * df = n-1 = 25-1 = 24

Cont.

* 7) As the degrees of freedom <u>increases</u> the t-distribution approaches the <u>Standard</u> <u>Normal distribution</u>.

t Distribution

The t-distribution is used when π is small and σ is unknown.

* Find the critical value t_c for a 95% confidence level when the sample size is 15.

$$C = 0.95 \longrightarrow$$

$$n = 15$$

$$df = 15 - 1 = 14$$

$$025$$

$$dc = 0.95$$

*Distr * lnvTarea: 0.025 df: 14 $t_c = 2.145$

* Find the critical value t_c for a 90% confidence level when the sample size is 22.

Constructing a Confidence Interval for a Population Mean (σ unknown)

* 1) Find the <u>Sample stats</u> n = sample size \overline{x} = sample mean s = sample standard deviation

* 2) Identify the <u>degrees of freedom (n-1)</u>, the <u>level of confidence (C)</u>, and the <u>critical value (tc)</u>: $C = \sqrt[9]{0}$ df = n-1 $t_c = Use calculator$ (like in previous a e xemples)

* 4) Find interval by adding and subtracting E to the sample $\underline{Mean(\bar{X})}$: