EX:

* You randomly select 16 coffee shops and measure the temperature of the coffee sold at each. The sample mean temperature is 162.0 F with a sample standard deviation of 10.0 F. Construct a 95% confidence interval for the population mean temperature of coffee sold. Assume the temperatures are approximately normally distributed.

$$
\begin{aligned}
& n=16 \\
& \bar{x}=162.0 \\
& s=10 \\
& c=0.95
\end{aligned}
$$

$$
d f=16-1=15
$$

$$
t_{c}=2.13
$$

$$
E=2.13\left(\frac{10}{\sqrt{16}}\right)=5,3
$$

$$
\begin{gathered}
162.0-5.3<\mu<162.0+5.3 \\
156.7<\mu<167.3
\end{gathered}
$$

95% confident that the population mean will be in this interval

EX:

* You randomly select 36 cars of the same model that were sold at a car dealership and determine the number of days each car sat on the lot before it was sold. The sample mean is 9.75 days, with a sample standard deviation of 2.39 days. Construct a 99% confidence interval for the population mean number of days the car model sits on the lot.

$$
\begin{aligned}
& n=36 \\
& \bar{x}=9.75 \\
& s=2.39 \\
& c=0.99
\end{aligned}
$$

$$
\begin{aligned}
& d f=36-1=35 \\
& t_{c}=2.72
\end{aligned}
$$

$$
E=2.72\left(\frac{2.39}{\sqrt{36}}\right)=1.08
$$

$$
\begin{gathered}
9.75-1.08<\mu<9.75+1.08 \\
8.67<\mu<10.83
\end{gathered}
$$

99% confident that population mean will be in this interval

