Chapter 2 Descriptive Statistics

2.1 Frequency Distributions

Characteristics of Data

 Center – A value that indicates where the Variation – A measure of the amount that the _____ Distribution – The ______ or _____ of the data. EX: ____ Outliers – Values that _____ from the _____ of the data Time – How data _____

Frequency Distribution

- A table that shows the ______
- Breaks the data into
- Tells the ______ of data values in each category

Class	Frequency
41-50	1
51-60	2
61-70	6
71-80	8
81-90	14
91-100	9

•	Lower class limits – _		in each class
•	Upper class limits – _		in each class
•	Class width –		between two
	consecutive		or
	two consecutive		
•	Range – the		between the
		_and	
	data entries		

EX:

Class	Frequency	
41-50	1	
51-60	2	
61-70	6	
71-80	8	
81-90	14	
91-100	9	

Constructing a Frequency Distribution

•	1) Determine	_ (between 5 and
•	2) Find: o Find: Divide range:	
	o, if nec	cessary
•	3) Find o LCL =	• •
		o determine the
	o Fill in there is no overlap between classes)	(make sure

•	4) Put a	in	the	approprio	ate
	class for each			_•	

• 5) _____ up marks to find the ____ of each class.

EX: Construct a frequency distribution for the following data:

- Cooking Blog Reading Times (in minutes per day)
- Classes: 5

7	39	13	9	25	8	22	0	2	18
2	30	7	35	12	15	8	6	5	29
0	11	39	16	15					

Additional Features of Frequency Distributions: Midpoint

Midpoint of a Class =

Relative Frequency

- The ______, or _____, of the data that falls in that class.
- Note: Sum should be CLOSE to
- Relative Frequency =

	Relative frequency table				
Weight (in Kg.)	No. of persons (f_i)	S 220			
60 - 62	5	$\frac{5}{100}$ × 5% or 0.05			
63 - 65	18	$\frac{18}{100} \times 18\%$ or 0.18			
66 - 68	42	$\frac{42}{100} \times 42\%$ or 0.42			
69 - 71	27,7	$\frac{27}{100} \times 27\%$ or 0.27			
72 - 74	8	$\frac{8}{100} \times 8\% \text{ or } 0.08$			
Total	$\Sigma f_i = 100$				

Cumulative Frequency

The _____ of the frequencies of that _____
 and _____

Scores: 1,1,2,2,2,2,2,3,3,3,3,4,4,5

Score	Frequency	Cumulative Frequency
1	2	2
2	5	7
3	4	>>> n
4	2	13
5	1	14

EX: Expanded Frequency Distribution

Class	Frequency, f	Midpoint	Relative frequency	Cumulative frequency
7 – 18	6	12.5	0.12	6
19 – 30	10	24.5	0.2	16
31 – 42	13	36.5	0.26	29
43 – 54	8	48.5	0.16	37
55 – 66	5	60.5	0.1	42
67 – 78	6	72.5	0.12	48
79 – 90	2	84.5	0.04	50
	$\sum f = 50$		$\sum \frac{f}{n} = 1$	

EX: Find the midpoint, relative frequency, and cumulative frequency of each class.

Class	Frequency
41-50	1
51-60	2
61-70	6
71-80	8
81-90	14
91-100	9

Frequency Histogram

- _____ of a frequency distribution.
- Horizontal scale classes separated by _____
 - The number directly between _____ and the
- Vertical scale
 - o _____ of bars correspond to

Frequency Histogram

• EX:

Frequency Polygon

_____connected to _____

Emphasizes the ________in frequencies

Relative Frequency Histogram

Ogive

A ______ that displays the _____ of each class at its _____
O Horizontal axis— label _____
O Vertical axis— label _____

Ogive

• EX:

EX:

Textbook p.52 #31, 35, 39, 41

2.2 More Graphs and Displays

Stem-and-Leaf Plot

Stem-and-Leaf Plot

Dotplots

- A graph in which ______ along a scale of values
- Benefits Shows ______, and easily identifies

17 students we asked how many text messages they had sent on a particular day.

8.5.1.6.6.6.5.7.7.7.1.6.6.6.8.1.1.1.

Bar Graphs

- Uses ______ to show _____ of categories of
 - Horizontal label ______
 - Vertical label ___

Pareto Charts

Bar graph in which the bars are ______

Pie Charts

A graph that shows qualitative data as ______

o _____ of slice is proportional to _____

Scatterplot

- A plot of _____ quantitative data
 - o X _____
 - o Y _____
 - o Shows _____ in data

Time-Series Chart

A graph of quantitative data that have been collected at ______ over a

EX:

Textbook p.62 #17, 23, 25, 27, 29, 31

Bad Graphs

- Contain ____
- •

Common Misleading Graphs

- Nonzero axis one or both axes
 - Exaggerates differences

- Pictographs ______of objects
 - Artists can create false impressions by

French Fries	
Hamburgers	2222
Hot Dogs	
	=10 items sold
	=10 items sold
4	=10 items sold

