
2.3 Measures of Central Tendency

Measure of Central Tendency

- A value that represents ______ entry of a ______
 - 1)
 - 2)

3)

• _____ number of data entries – median is the

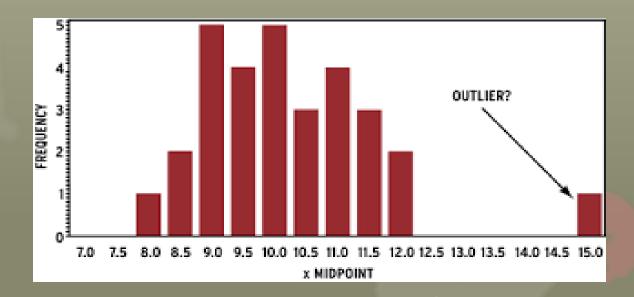
• _____ number of data entries – median is the

• Mode – the value that _____

0

• Bimodal – _____

• Multimodal – _____


Critical Thinking

• Always consider whether or not the calculated

- Do they really _____

• May be affected by _____ – data entries that are _____ from the rest of the data

• Outliers cause _____

EX:

• Find the mean, median, and mode of the data, if possible. If any measure of center cannot be found or does not represent the center of data, explain why.

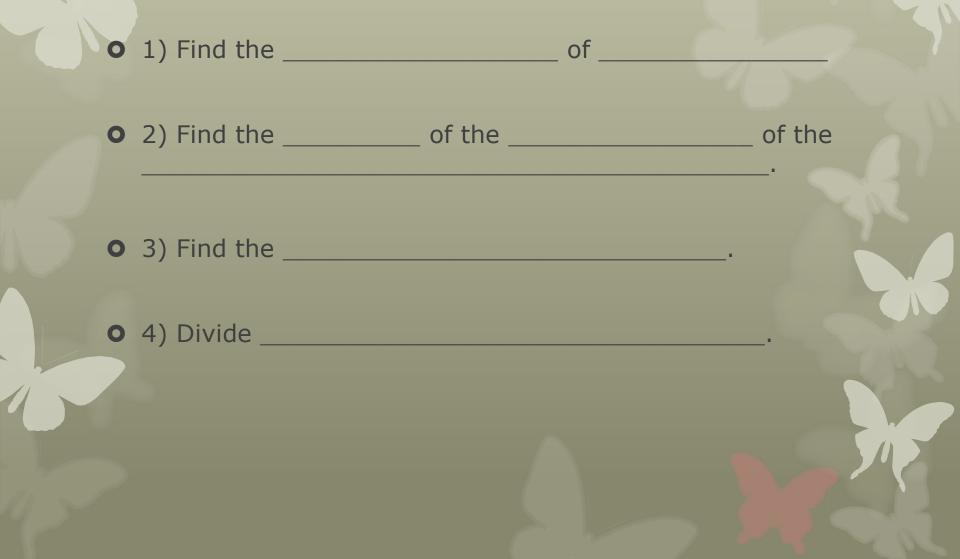
O Prices (in dollars) of basketball shoes 70, 130, 80, 20, 100, 120, 125, 90, 20, 145

Weighted Mean

• Computed when data values are _

O EX:

O EX:


• Formula:

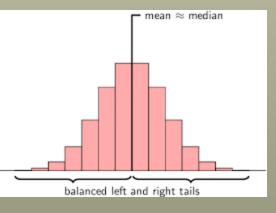
EX:

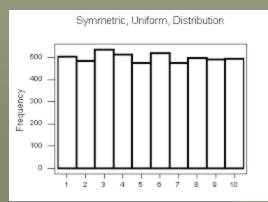
• You are taking a class in which your grade is determined from 5 sources: 50% from your test mean, 15% from your midterm, 20% from your final exam, 10% from lab work, and 5% from homework. Your scores are 86 (test mean), 96 (midterm), 82 (final exam), 98 (lab work), and 100 (homework). What is the weighted mean of your scores?

• The minimum average for an A is 90. Did you get an A?

Mean of a Frequency Distribution

EX: Find the mean of the frequency distribution.

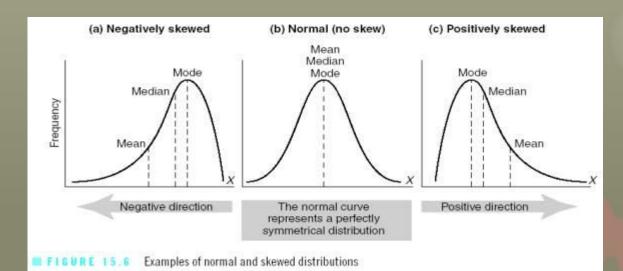

Class	Frequency
41-50	1
51-60	2
61-70	6
71-80	8
81-90	14
91-100	9



Shapes of Distributions

 \mathbf{O}

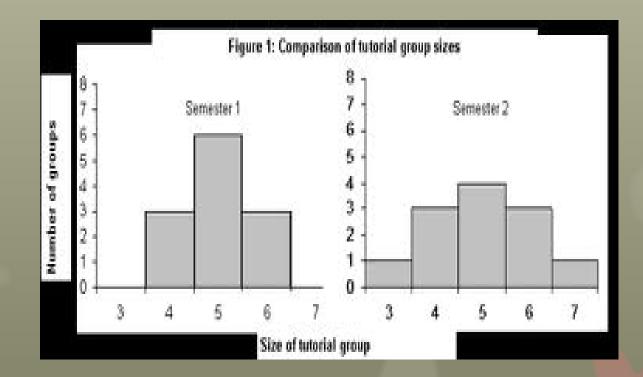
0



• Skewed – distribution of data is and

than to the

• Skewed to the


- Longer left tail
- Mean and median are to the left of the mode
- Skewed to
 - Longer right tail
 - Mean and median are to the right of the mode

3.3 Measures of Variation

Measures of Variation

• How far the data is _

Ways to Measure Variation:

O Range : _____

• Advantage:

• Disadvantage :

• The sum of all deviations in a data set is always 0• EX:

O Standard Deviation (s): measure of variation of from the

• Represents _____ data is from the

• Can be

• Outliers

0

- Can be used to compare the variation of data in different sets if the units are the same and if the means are approximately the same
- O EX:

To Find Standard Deviation

O For a Population:

- 1) Find the ______of the data set
- 2) Find the ______ of each entry
- 3) _____ each deviation
- 4) _____ all the squares
- 5) Divide by the _____
- 6) Take the _____

O For a Sample :

Formulas:

• NOTE:

- The step ______ called the **population** or **sample** _____
 - This measure of variation may not be very useful or commonly used since its ______ of the original units

is

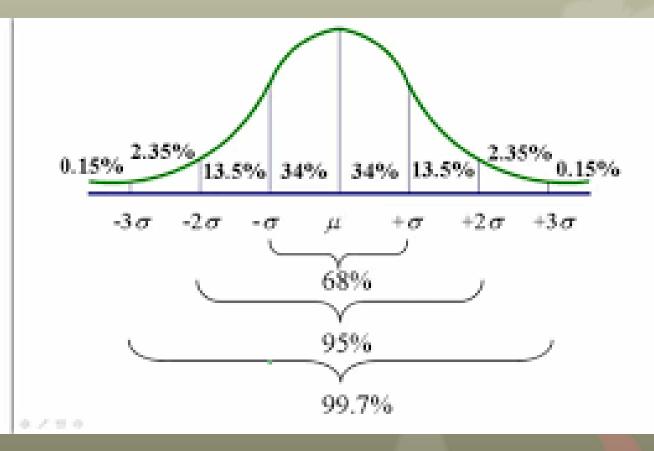
• Taking the square root in the last step the original units, thus making ______ a better measure of variation

EX: Find the range, mean, variance, and standard deviation of the population data set

• Salaries (in thousands) for Skyline Elementary teachers

O 41, 38, 39, 45, 47, 41, 44, 41, 37, 42

EX: Find the range, mean, variance, and standard deviation of the sample data set


- Recovery time (in days) for high school football players that suffered concussions
- **•** 4, 7, 6, 7, 9, 5, 8, 10, 9, 8, 7, 10

Usual and Unusual Values

• Values that lie ______ from the mean are considered ______

Empirical Rule (or 68-95-99.7 Rule)

• 68% of data:_____

• 95% of data:_____

• 99.7% of data:_____

EX:

• In a survey conducted by the National center for Health Statistics, the sample mean height of women in the United States (ages 20-29) was 64.2 inches, which a sample standard deviation of 2.9 inches. Estimate the percent of women whose heights are between 58.4 inches and 64.2 inches.

Coefficient of Variation

0	Used to	different sets of data
	with	
	• EX: Heights and Weights	
	• Expressed as a	
	O The	the
		_ to the data set
0	Formula:	

EX:

• The table shows the heights (in inches) and weights (in pounds) of a basketball team. Find the coefficient of variation for the heights and weights. Then compare the results.

11	
Heights	Weights
72	180
74	168
68	225
76	201
74	189
69	192
72	197
79	162
70	174
69	171
77	185
73	210

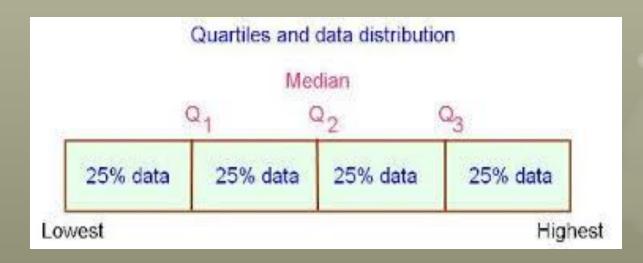
2.5 Measures of Position

Fractiles

- Numbers that _____ ordered data set into _____
- Used to show the _____ entry within a data set

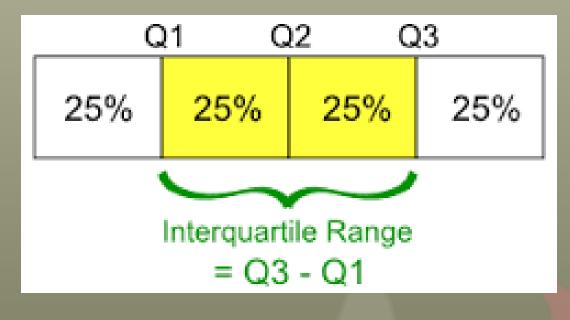
of a data

an


3)

2)

1)


Quartiles

• Divides data into 4 equal parts

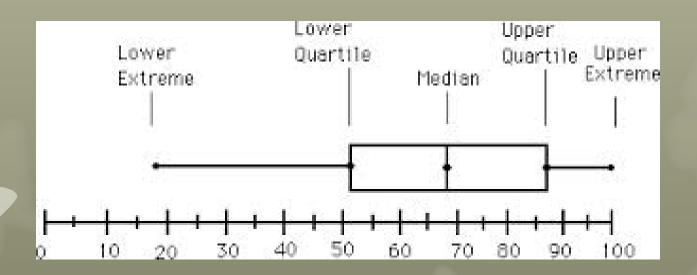
• Interquartile Range (IQR) – shows the spread of the of the data

 \mathbf{O} IQR =

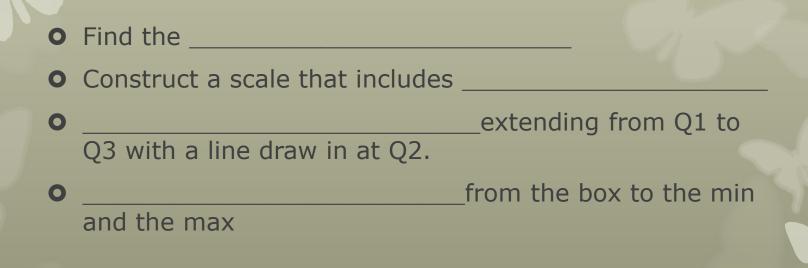
O Using the IQR to Identify Outliers

- 1) Find _____
- 2) Find the _____
- 3) Multiply the IQR _____
- 4) _____ the result from step 3 from Q1
 - Any data entry ______ is an outlier
- 5) ______the result from step 3 to Q3
 - Any data entry______ is an outlier.

EX: Find the quartiles, the IQR, and identify any outliers.


o 56, 63, 51, 60, 57, 60, 60, 54, 63, 59, 80, 63, 60, 62, 65

5-Number Summary


• Important features of a data set:

Boxplot (Box-and-whisker plot)

• Graph of data displaying the 5 point summary

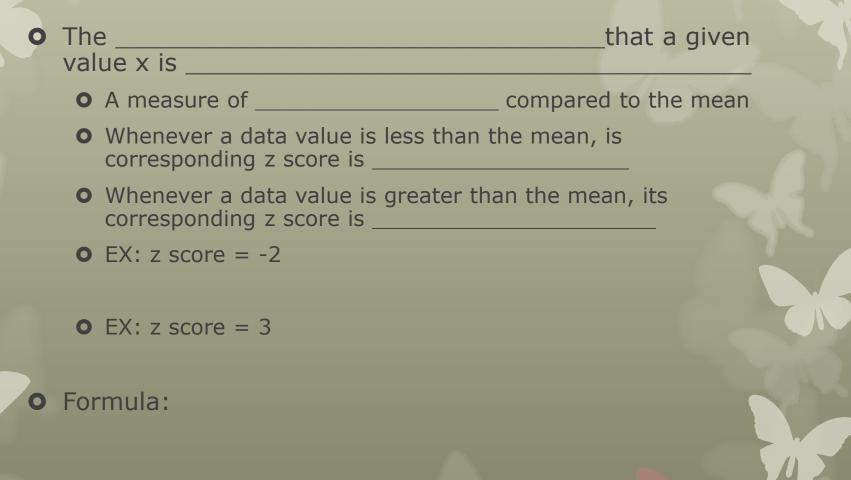
To Construct a Boxplot:

EX: Find the 5 point summary and construct a box and whisker plot.

• 39, 36, 30, 27, 26, 24, 28, 35, 39, 60, 50, 41, 35, 32, 51

Percentiles

• Divide data into _____ • Often used in _____ related fields to indicate how _____ compares with _____ **O** EX:

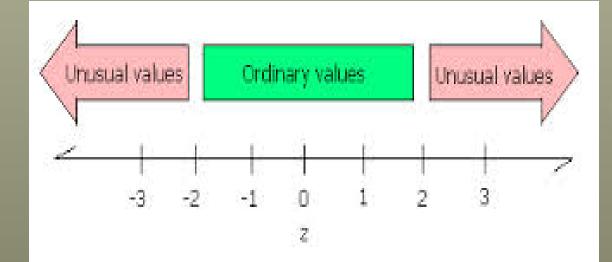

O To find the percentile that corresponds to a specific data entry *x*:

• Percentile of x =

EX: Find the percentile that corresponds to \$30,000.

Tuition costs (in thousands of dollars) for 25 universities.
44, 30, 38, 23, 20, 29, 19, 44, 29, 17, 45, 39, 29, 18, 43, 45, 39, 24, 44, 26, 34, 20, 35, 30, 36

Standard Score or Z-Score



• Unusual:

• Z scores

• Usual/Ordinary:

• Z score is between(or equal to) _

EX: Comparing Z scores

• The table shows the means heights and the standard deviations for a population of men and a population of women. Compare the z-scores for a 6 foot tall man and a 6 foot tall woman.

Men's Heights	Women's Heights
Mean = 69.9 in.	Mean = 64.3 in.
SD = 3 in.	SD = 2.6 in.

