Chapter 5
Normal Probability Distributions

5.1 INTRODUCTION TO NORMAL DISTRIBUTIONS AND THE STANDARD NORMAL DISTRIBUTION

Normal Distribution

- A probability distribution for a
- Continuous - has an ___ of possible values
- Graph is called the \qquad .

Normal Distribution Properties

- 1) The \qquad are all \qquad (in the middle).
- 2) \qquad and \qquad
- 3) Area under the curve equals \qquad
- 4) Curve approaches, but \qquad touches, the x-axis.
- 5) Has two \qquad : the points at which the curve changes from curving to curving \qquad
- These points are \qquad away from the

Properties Cont.

Mean and Standard Deviation

- The mean and standard deviation determine the of the normal curve.
- The mean gives the location of the \qquad
\qquad -
- The standard deviation describes how the data is
\qquad .
- Larger SD = \qquad
- Smaller SD =

Mean: $\mu=3.5$
Standard deviation:
$\sigma=0.7$

Mean: $\mu=1.5$ Standard deviation: $\sigma=0.7$

EX:

- Which normal curve has a greater mean?
- Which normal curve has a greater standard deviation?

EX:

- Does the graph represent a normal distribution? Explain.
- If it does, estimate the mean and standard deviation.

EX:

The Standard Normal

Distribution

- A normal distribution with a \qquad and a \qquad .
- Horizontal scale is corresponds to .
- Z-score - The number of \qquad a value lies from the \qquad .
- EX: z-score = 1 \qquad
- All normal distributions can be converted to standard normal distributions by converting \qquad into a \qquad
- Formula to turn an x-value into a z-score:
- Area under the curve = \qquad

The Standard Normal Distribution

Finding the Area Under the Standard Normal Distribution

- Use the formula to \qquad an \qquad into a .
- Round to the nearest \qquad .
- Use your calculator:
- DISTR
- normalcdf
- Lower limit:
- Upper limit:
- Mean =
- Standard deviation =
- Notice:
- Areas for z-scores farther left are \qquad
- Area for $z=0$ is \qquad
- Areas for z-scores farther right are \qquad

Areas Cont.

- Find the cumulative area that corresponds to a z-score of 1.15.
- Find the cumulative area that corresponds to a z-score of -0.24.
- Find the cumulative area that corresponds to a z-score of 2.19.

Guidelines for Finding Area Under the Standard Normal Curve

- 1) \qquad the curve and \qquad the appropriate area, if necessary.
- 2) Find the area of the corresponding and \qquad if necessary.
- See next slide.

Using Table A to find the area under the standard normal curve that lies (a) to the left of a specified z-score, (b) to the right of a specified z-score, and (c) between two specified z-scores

(a) Shaded area:

Area to left of z

(b) Shaded area:

1-(Area to left of z)

(c) Shaded area:
(Area to left of z_{2}) - (Area to left of z_{1})

EX: Find the area in the indicated region.

EX: Find the area.

- To the left of $z=-1.15$ and to the right of 1.87.

5.2

Normal

Distributions: Finding Probabilities

For a Normal Distribution:

- The \qquad that \qquad will lie in an interval can be found by finding the \qquad under the normal curve.
- However, before finding the area - you must \qquad all \qquad to their corresponding using:
- Then use your \qquad to find the
under the
- A survey indicates that people use their cell phone an average of 1.5 years before buying a new one. The standard deviation is 0.25 year. A cell phone user is selected at random. Find the probability that the user will keep his or her current phone for less than 1 year before buying a new one.

EX=

- A survey indicates that for each trip to a supermarket, a shopper spends an average of 45 minutes with a standard deviation of 12 minutes in the store. A shopper enters the store.
- A) Find the probability that the shopper will be in the store for each interval listed below.
- B) Interpret your answer when 200 shoppers enter the store. How many shoppers would you expect to be in the store for each interval of time?

Between 24 and 54 minutes.

- More than 39 minutes

5.3

Normal
Distributions: Finding Values

To find a value - given an area or probability:

- Find the \qquad using your
- DISTR
- invNorm
- Area: Enter the given \qquad or
(remember they are \qquad
- Mean:
- Standard Deviation:
- If asked, \qquad the \qquad into an \qquad using:
- Find a z-score that corresponds to a cumulative area of 0.3632.
- Find the z-score that has 10.75% of the distribution's area to its right.
- Find the z-score for which 95% of the distribution's area lies between -z and z.
- Find the z-score that corresponds to each percentile.
- P_{5}
- P_{50}
- A vet records the weights of cats treated at a clinic. The weights are normally distributed, with a mean of 9 pounds and a standard deviation of 2 pounds. Find the weights x corresponding to z -scores of $1.96,-0.44$, and 0 .
- Scores for a California Standardized Test are normally distributed, with a mean of 50 and a standard deviation of 10. A college will only accept applicants with scores in the top 10%. What is the lowest score an applicant can earn and still be eligible to be accepted by the college?
- In a randomly selected sample of women ages 20-34, the mean total cholesterol level is 181 milligrams per deciliter with a standard deviation of 37.6 milligrams per deciliter. Find the highest total cholesterol level a woman in this 20-34 age group can have and still be in the bottom 1%.

5.4

Sampling Distributions and the Central Limit Theorem

Sampling Distribution

- When \qquad of \qquad are repeatedly taken from a \qquad .
- REMEMBER: WE use characteristics of a \qquad
\qquad to estimate characteristics of a
- EX: You find the \qquad of several samples to estimate the \qquad .

Sampling Distributions of Sample Means

- When the \qquad of several is taken.
- Properties:
- When the \qquad of all of the is calculated, it

Cont.

- The \qquad of the
\qquad :
- The standard deviation of the is called the \qquad .

Sampling Distributions

Average

Average

The Sampling Distribution...

... is the distribution of a statistic across an infinite number
of samples

- List all possible samples of size $\mathrm{n}=2$, with replacement, from the population $\{1,3,5,7\}$. Calculate the mean of each sample. Find the mean, variance, and standard deviation of the sample means. Compare your results with the population results: mean $=4$, variance $=5$, standard deviation $=\mathrm{V} 5=2.236$

Sample	Mean

Sample	Mean

The Central Limit Theorem

- Describes the relationship between the \qquad and the
that the sample is taken
from.
- Provides the information you will need to use \qquad to make \qquad about a \qquad .

The Central Limit Theorem

- 1) If sample sizes of \qquad ,
are drawn from any population with \qquad and \qquad , then the
sampling distribution is a \qquad (even if the population is not).

Cont.

- 2) If the population itself is \qquad , then the sampling distribution is for ___ sample size \qquad .

For EITHER situation:
Sample Mean = population mean:

Sample Variance $=$

Sample Standard Deviation =

- Cell phone bills for residents of a city have a mean of $\$ 47$ and a standard deviation of $\$ 9$. Random samples of 100 cell phone bills are drawn from this population, and the mean of each sample is determined. Find the mean and standard deviation of the sampling distribution of sample means. Then sketch a graph of the sampling distribution.

Probability and the Central Limit Theorem

- To find the \qquad that a will lie in a given
- Change the given \qquad to a \qquad using:
- Find the corresponding \qquad using your calculator and \qquad is necessary.
- The average time spent driving each day for an age group of $15-19$ is 25 minutes. You randomly select 50 drivers ages 1519. What is the probability that the mean time they spend driving each day is between 24.7 and 25.5 minutes? Assume that the standard deviation is 1.5 minutes.
- The mean room and board expense per year at four-year colleges is $\$ 9126$. You randomly select 9 four-year colleges. What is the probability that the mean room and board is less than $\$ 9400$? Assume the standard deviation is $\$ 1500$.
- The average credit card debt carried by undergraduates is normally distributed with a mean of $\$ 3173$ and a standard deviation of $\$ 1120$. You randomly select 25 undergraduates who are credit card holders. What is the probability that their mean credit card balance is less than $\$ 2700$. Is this considered unusual?
5.5

Normal
Approximations to Binomial Distributions

Normal Approximation to a Binomial Distribution

- REVIEW: Binomial Distribution - two outcomes, either or \qquad
\qquad
- If and \qquad , then the binomial random variable \qquad is approximately
\qquad , with \qquad :
- And \qquad

- Two binomial experiments are listed. Determine whether you can use a normal distribution to approximate the distribution of x, the number of people who reply yes. If you can, find the mean and the standard deviation. If you cannot, explain why.
- 1. In a survey of 8 to 18 year old heavy media users in the US, 47% said they get fair to poor grades (C or below). You randomly select forty-five 8 to 18 year old heavy media users and ask them whether they get fair or poor grades.

EX cont.

- 2) In a survey of 8 to 18 year old light media users in the US, 23% said they get fair to poor grades (C or below). You randomly select twenty 8 to 18 year old light media users in the US and ask them whether they get fair or poor grades.

Continuity Correction

- An \qquad made when you use a normal distribution to
\qquad a
a .
- To include values of
\qquad in the interval, you need to move to the and \qquad of the midpoint.

Correction for Continuity

- When you use a continuous normal distribution to approximate a binomial probability, you need to move 0.5 unit to the left and right of the midpoint to include all possible x-values in the interval (continuity correction).

Exact binomial probability Normal approximation

- Use a continuity correction to convert each binomial probability to a normal distribution probability.
- 1) The probability of getting between 270 and 310 successes, inclusive.
- 2) The probability of getting at least 158 successes.
- 3) The probability of getting fewer than 63 successes.
- 4) The probability of getting at most 54 successes.

Guidelines to Using a Normal Distribution to Approximate Binomial Probabilities:

- 1) Verify that a binomial distribution applies.
- Find \qquad
- 2) Determine whether you can use a distribution to approximate \qquad the \qquad
- Is \qquad and Is \qquad
- 3) Find the \qquad and the \qquad

Guidelines Cont.

- 4) Apply the \qquad .
Shade the \qquad under the normal curve.
- 5) Find the corresponding \qquad .
- 6)Find the \qquad using your
- In a survey of 8 to 18 year old heavy media users in the US, 47% said they get fair to poor grades (C or below). You randomly select forty-five 8 to 18 year old heavy media users and ask them whether they get fair to poor grades. What is the probability that fewer than 20 of them respond yes?
- Fifty-eight percent of adults say they never wear a helmet when riding a bike. You randomly select 200 adults and ask them whether they wear a helmet. What is the probability that at least 120 adults will say they never wear a helmet when riding a bike?
- A study of NFL retirees, ages 50 and older, found that 62.4\% have arthritis. You randomly select 75 NFL retirees who are at least 50 years old and ask them whether they have arthritis. What is the probability that exactly 48 will say yes?

